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FOREWORD

1992 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND
ASSESSMENT TECHNOLOGY WORKSHOP 'CSESAW '92)

Mission critical computer (MCC) systems in the Department of Defense, and in
particular, the Navy, are extremely large and complex, controlling a wide variety of
assets operating in many unforeseeable situations. These systems have hard real-
time, stringent fault tolerance and intensive security requirements. They are
typically implemented on a combination of parallel and distributed architectures. In
addition, these systems are generally embedded within a human organization
structure and/or have human operators in the loop.

The emphasis of CSESAW (pronounced seesaw) '92 is on exploring system-level
design synthesis and assessment capabilities for MCC systems. These capabilities will
facilitate the development of such systems from informal system requirements,
through the design phase prototyping, and into implementation and post
deployment. Component products produced by these capabilities are specifications
that subenvironments [e.g., hardware engineering environment (HWEE), software
engineering environment (SEE), and human computer interaction engineering
environment (HCIEE)] will receive. The focus of this workshop is the development
and integration of these multiple technologies and the exploration of the creation
of a system-level engineering discipline with support technologies to provide
potential high payoff solutions to the difficult problems encountered by designers,
developers, and maintainers of hard real-time MCC systems. The emphasis is on
resolving system-level technology issues that cut across component boundaries, such
as those associated with system behavior requirements of real time, fault tolerance,
and security.

Formidable challenges await the technology developers. First, there is a need
to establish strong scientific and engineering foundations with its associated
technological advances in methodologies, processes, techniques, and supporting
mechanizations. Since it is systems that need to be engineered, a system perspective
should be followed, allowing the orchestration, interaction, and integration of the
engineering of system components.

Second, the technologies and capabilities need to be integrated with the rest
of the engineering process. Therefore, the capability to provide tight linkages to
detailed design evaluation, systems forward engineering, and systems reengineering
must be developed, ultimately providing a seamless overall engineering process. A
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significant amount of effort has been put into component technologies, such a!
hardware, microelectronics, memory, databases, software, man-machine interface,
etc. Major strides have been made in these areas in the last few years, however, the
formal, systematic integration and engineering of these components into an overall I
system has lagged far behind. For hard real-time MCC systems with high fault
tolerance and security requirements, the problem is especially acute, This is a direct
result of a lack of a system-level engineering methodology.

Last, understanding the needs of the application communities and the
customers is of utmost importance to the successful transition of the technologies. I
Demonstration of the correct technological capabilities must be based on the correct
scale, context, and scope of the target applications. Correct scale implies that the
technology can be applied to the problem size the application calls for The correct
context means the technology is specific (or general) enough for the application
domain. The correct scope dictates that the technology addresses the nonfunctional
attributes (real-time, fault tolerance, etc.) that the particular application requires.

It is in the spirit of working to meet these challenges that we welcom? you to
this workshop. We hope to provide in the workshop an atmosphere in which the
participants, including technology developers, researchers, users, and customers, can
meet, interact, and exchange ideas on relevant issues. In the near future, we hope to
be able to say that this workshop was the beginning of a new generation in systems
design synthesis.

This workshop would not have been possible without the hard work of many
people, including the workshop, program, and advisory committees; authors;
presenters of the submitted papers; panel members; workshop attendants; panel
chairs; and breakout session chairs. A very warm "thank you" is extended to all. In
particular, we wish to acknowledge Michael Edwards, Ngocdung Hoang, Cuong
Nguyen, Michael Jenkins, Chuck Sadek, Kathy Lederer, Adrien Meskin, Dong Choi, I
and Janet Higgins. Finally, a special thanKs goes to Elizabeth E. Wald and CDR Grace
Thompson of the Office of Naval Technology for tirelessly working for and
supporting the technology developments in this important area.

We hope you have a productive and enjoyable workshop!

Steven L. Howell Philip Q. Hwang I
Assistant Workshop Chairman Workshop General Chairman I

I
ii U



ABSTRACT

1992 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND ASSESSMENT
TECHNOLOGY WORKSHOP (CSESAW '92)

The emphasis of CSESAW '92 is on exploring system-level design synthesis and
assessment capabilities for mission critical computer systems. These capabilities will
facilitate the development of such systems from informal system requirements,
through the design phase prototyping, and into implementation and post
deployment. Component products produced by these capabilities are specifications
that subenvironments will receive. The focus of this workshop is the development
and integration of these multiple technologies and the exploration of the creation
of a system-level engineering discipline with support technologies to provide
potential high payoff solutions to the difficult problems encountered by designers,
developers, and maintainers of large, complex, real-time systems. The emphasis is on
resolving system-level technology issues that cut across component boundaries, such
as those associated with system behavior requirements of real time, fault tolerance,
and security.
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AGENDA

1992 COMPLEX SYSTEMS ENGINEERING SYNTHESIS AND
ASSESSMENT TECHNOLOGY WORKSHOP

20-24 July 1992

Bennett Auditorium

Naval Surface Warfare Center Danlgren Division
White Oak Detachment (NSWCWODET)

10901 New Hampshire Avenue, Silver Spring. MD 20903-5000

Monday, 20 July 1992

0800-0900 Registration
Bennett Auditorium Foyer, NSWCWODET

0830 Welcome-CAPT Richard Moore
NSWCWODET

Workshop Overview-Steven Howell
NSWCWODET

Real-time Dependable Systems Design I

0930 Continuous Availability for Mission Critical Services

F. Cristian-University of California-San Diego

1000 Break

1015 State Restoration in Real-Time Fault-Tolerant Systems
F. Jahanian-IBM

1045 Fault-Tolerant Convergent Voting in Large Sparsely Connected
Networks
R. Kieckhafer-University of Nebraska-Lincoln

1115 Applications and Extensions of the DRB Technology for Design of
Real- Time Fault- Tolerant Distributed Computer Systems
K. H. (Kane) Kim-University of California-Irvine

1145 Lunch

v



I

Real-time Dependable Systems Design II I
1215 The BEAVER Program: A Tool for Survivability Analysis of

Conceptual Distributed Systems I
LT C. Whitcomb-U.S. Navy

1300 Application of the Hybrid Fault Model
M. Hugue-Allied Signal

1330 Design Capture for System Dependability
J. Zhou-Allied Signal

1400 Using a POSIX Platform to Program Real- Time Concurrency and Time I
Fault Tolerance in Complex Systems
V. Wolfe-University of Rhode Island

1430-1700 Panel: Integration of Dependability into Systems Design
Chair: Robert Goettge-Advanced Systems Technology
Members: K. H. (Kane) Kim-University of California-Irvine

Jeffrey Zhou-Allied Signal
Farnam Jahanian-IBM
Eric Brehm-Advanced Systems Technology
Michelle Hugue-Allied Signal

Tuesday, 21 July 1992

Metrics Design Capture Methods
Auditorium Ticonderoga Room 3

0800 Developing a Metrics Assessment A Framework for the Engineer-
Program for the SLBM Software ing/Reengineering of Complex
Development Division Systems
W. Farr-Naval Surface Warfare B. Blum-Johns Hopkins University/
Center Dahlgren Division (NSWCDD) Applied Physics Lab (JHU/APL)

0830 System Design Factors A View to an Implementation
C. Nguyen-NSWCWODET N. Hoang-NSWCWODET

0900 No presentation in this time slot The Environmental Capture View:
Addressing External Factors in I
Capture and Analysis of Large Scale
Complex System Design
N. Karangelen-Trident Systems

0930 Break
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1000 A Method for the Assessment of A Study for the Development of
System Designs Requirements Traceability Model
J. Litke-Grumman Corporate B. Ramesh-Naval Postgraduate
Research Center School

1030 Methodology for Validating An Interactive Natural Interface for
Software Metrics Formal Capture of Complex System
N. Schneidewind-Naval Postgraduate Requirements
School L. Hinton-Trident Systems

1100 The Consolidated Experience Factory: Integrated System Designer
An Approach for Instrumening M. Blanchard-Science and
System Engineering Technology Associates
R. Vienneau-Kaman Sciences

1130 Lunch

Integration 1

1230 Strengthening the Systems/Software Engineering Interface for Real-
Time Systems
M. Alford-Ascent Logic Corporation

1300 START/ES-An Expert System Tool for System Performance and
Reliability Analysis
R. Goettge-Advanced Systems Technologies

1330 Formalizing the Transition from Specification to Design for Real-
Time Systems
A. Gabrielian-Uniview Systems

1400 Cooperative Resource Management in R-Shell
W. Zhao-Texas A&M

1430-1700 Panel: Application of Assessment Techniques Throughout the
System Development Process
Chair: Richard Nance-Virginia Polytechnic Institute & State

University (VPI&SU)
Members: William Farr-NSWCDD

Erwin Warshawski-JRS Labs
Josd Mu-noz-Naval Undersea Warfare Center (NUWC)
Noah Prywes-Computer Command and Control
Company (CCCC)
Norman Schneidewind-Naval Postgraduate School
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Wednesday, 22 July 1992 j
Foundations of System Engineering System Engineering I

Auditorium Ticonderoga Room I
0800 An Extended Event Descriptor for Massively Interconnected Models for

Real-Time Systems a Beam Former I
C. Biow-University of Maryland C. Lee-Naval Postgraduate School

0830 Economical Development of Complex Analyzing Concurrent and Fault-
Computer Systems Tolerant Software using Stochastic I
T. Choinski-NUWC Reward Nets

K. Trivedi-Duke University

0900 Improving Safety Margins in Rate The Network Synthesis System 5
Monotone Scheduling E. Warshawsky-JRS Lab
R. Menon-Texas A&M

0930 Stochastic Scheduling for Distributed Reliability of Redundant Arrays of
Real-Time Systems Inexpensive Disks (RAID)
H. Moiin-University of California- K. Trivedi-Duke University
Santa Barbara

1000-1700 Breakout Sessions

Traceability
Chair: Michael Edwards-NSWCWODET
Moderator: 3
Impact of Technology on Design
Chair: Cuong Nguyen-NSWCWODET
Moderator: Evan Lock-CCCC

Thursday, 23 July 1992 3
0800 Reports on Breakout Sessions

1000 Break I
Design Synthesis Methods 3

1030 Rapid Prototyping
J. Higgins-NSWCWODET 3

1100 A New Paradigm for the Design and Implementation of Large-Scale
Distributed Real-Time Systems
I. Lee-CCCC, University of Pennsylvania I

1130 Lunch
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Design Synthesis Methods Integration II
Auditorium Ticonderoga Room

1230 Benefits of Using Object-Oriented Exchange of Information between
Methodology for Missile Guidance Design Capture and Design
Processor Software Development Optimization Techniques: The
S. Lee-Governors State University Destination Interface Specification

E. Lock-CCCC

1300 Embedded Computer System Integrated System Evaluation
Requirements Methods, Analysis, and D. Choi-NSWCWODET
improvement
S. White-Grumman Corporate
Research Center

1330 Improving the Practice in Computer- Organizing Top-Level Systems
Based Systems Engineering Requirements
S. White-Grumman Corporate R. Jeffords-Naval Research
Research Center Laboratory

1400-1700 Panel: Unification of Capture Methodologies and Representation
Information
Chair: Nicholas Karangelen-Trident Systems
Members: Evan Lock-CCCC

John Rumbut-NUWC
Armen Gabrielian-Uniview Systems
Bruce Blum-JHU/APL
David Oliver-General Electric (GE)

Friday, 24 July 1992

System Engineering II

0800 The Component Manager: Supporting Interactive and Automated
Retrieval of Real-Time Software Components
W. Rossak-New Jersey Institute of Technology

0830 The Design of the MARUTI System
D. Moss&-University of Maryland

0900 Lessons Learned in Modelling for Architecture Analysis
J. Strand-Mystech Associates

0930 Workshop Close
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Continuous Availability for Mission C'ritical
Services

Flavin Cristiaii
Computer Science and Engineering Departinuci

University of California, Sail Diego
La Jolla, CA 92093-0114

June 11, 1992

Abstract

This paper describes a new kind of distributed system scrvice, the Avail-
ability Management service, responsible for ensuring that the mission critical
services of a distributed system remain continuously available to users despite
node removals and node restarts caused by failures, maintenance and growth.
The presentation stresses the main ideas behind this new service, and outlines
a simple design that depends upon the existence of synchronous membership
and atomic broadcast group communication services. Extensions of this initial
design to deal with asynchronous group communication services are also briefly
discussed.
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1 Introduction I

With the ever increasing dependcrnce on cormIm1tig 1i rvW,, .lc ieuv II I ,%II . i; 3! 14.
presence of failures, Maintenance and horizontal growth bc(omi(' Of p.1ra l(4 i l t i1u u

portance. In present systems, responsibliity for recntigiurinli t a ,cii after failu
or removal of processors for maintenance rests mIostly- with th, huinau-i, ýs,,tu ,,r II
ators. Humans tend to have fair-N slow reaction tines, and this can r,':ult in Iengthy
intervals during which critical services will be unavailable. Also. humans at,.- notoni

ous for making mistakes, especially when under stress, and the mnistakes Inad, while I
attempting repair actions can lead to further failures, causing further unavaiability
For example, [Gray861 reports that 42 % of the failures in the lantdenm distributed

systems are caused byl human mistakes made during inaintctian,,e. operation andl
con figu rat ion.

To ensure automatic reconfiguration in the presence' of failures anid ,11aximize the

availability of critical services, the Advanced Automation System [(;I)I)9], built f,,
supporting US air traffic control in the 21st century. uses a new Availability .Manage

ment service, that automatically reconfigures servers imiplementing critical seivicecs iII
the presence of processor removals caused by failures and iaintellance and p1 ocevsor
additions caused by restart, repair and horizontal growth. 3
The purpose of this paper is to explain in a pedagical milaniner thle niain idi'as be-
hind this new service and outline a simple way of implementing such a service. Our

presentation sacrifices the description of many of the details involved in a realistic
Availability Management service design for the purpose of making the concepts on
which the service and its design are based easily understandable. To this end, we

focus on designing our Availability Management service on top of an easy to under-
stand synchronous communication environment and we deal with only one kind of
service availability policy. We conclude by discussing how our initial specification andi
design can be extended to deal with asynchronous systems subject to partitioning as
well as with other kinds of service availability policies.

We begin by introducing our basic notions, system structure and assumptions arid
by stating the requirements that a Service Availability Management service should

satisfy. A replicated implementation is then briefly described. A discussion of possible I
extensions concludes the paper.

I
3
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2 Basic Concepts

Every computing system is built to provide services to its users. A strrice provided tu
a user is a system behavior as perceived by that user: a sequence of observable outputs
triggered by a sequence of service operation invocations. The service specification
prescribes future service outputs solely in terms of the operations being currently
invoked and the current service state, where the current service state is the result
of applying the operation invocations completed so far to the initial service state.
Services that share the same set of invocable operations and the same set of potential
behaviors belong to the same service type. In general, each service of a certain type
has a current state distinct from that of other services of the same type, depending on
the history of operation invocations completed so far for that service. For example,
the relational ANSI SQL query and update operations together with the semantics
defined for these operations in an ANSI SQL manual define the ANSI SQL relational
database service type; if "employees" and "accounting" are two database services of
this type, their states at a certain point in time are in general different, depending
on the history of updates applied since their creation.

The operations defined for a service can only be carried out by a service implementa-
lion consisting of one or more servers (or objects). A server encapsulates private state
data by a set of procedures (or methods) that provide the only way for changing and
accessing the server's state. A server is a unit of failure and growth: at any point in
time a service implementation has a membership consisting of an integer number of
servers. Because servers are defined to be units of failure and growth, a server cannot
span several host systems that can fail independently. Service operation invocations
result in server procedure executions which can cause the state of the servers imple-
menting the service to change. Since the state of a service is a function of the states
of the servers that implement it, such server state changes lead in turn to service state
changes.

Note that it is vital to avoid confusing the notions of service and server (or object).
In the object-oriented programming literature, the term object is often used in a
confusing way to designate both what we call service and what we call server. The
confusion is understandable if each service is implemented by a single object, so that
there is a one to one mapping between services and objects. This was historically
the case for most of the work on object-oriented programming, where issues related
to fault-tolerance or replication were not a primary focus. The confusion becomes
awkward when a service is implemented by several redundant servers (or objects)
which are independent units of failure and growth. In this latter case, the objects
that implement the service can fail and restart without the service users observing

5
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any service failure or restart. Thus, when services must remain available despite thi 3
failure of some of the servers (or objects) that imlplement them, it becomes imperativr
to distinguish between services and servers. 3
Object oriented programming methodology requires that service users not know any
details about how the state of a service is represented in terms of server states or how
the service operations are implemented by the server procedures. Such implementa-
tion details are hidden from users, who need only know the externally visible, abstract
service specification [Parnas72I. For example, a database service can be implemented
by a single database server, by a set of distributed servers that each manages a frag- I
ment of the database state, or by a group of redundant distributed database servers
that each manages a replica of the entire database. If redundant servers are used to
implement a service, the user need not know what synchronization and replication
policies exist among servers. The synchronization policy prescribes how far apart the
local states of the servers can get, where the distance between the local states of two
servers consists of the difference in the number of updates to the initial state applied
so far by them. If the policy is loose synchronization, a primary maintains the current
service state while one or more backups maintain past service states. A bound oin the 3
distance between losely synchronized servers can be maintained by periodic check-
points of the state of the primary to backups. If the policy is close synchronization.

then the servers act as peers by interpreting all service requests in parallel and main- i
taining their internal states close to each other. The replication policy for a service s
specifies how many servers should exist for s. For example a replication policy of 2
specifies that 2 redundant servers should be used to implement s. The synchroniza- 3
tion and replication p3licies specified for a service constitute the availability policy
for that service. 3
3 System Model and Assumptions 3
We consider a distributed system consisting of nodes linked by a communication 3
network. Nodes can be uniprocessors or multiprocessors, but what is essential is that
they are units of failure and growth: at any point in time a node is perceived as either
correctly running (or active) or failed (not active) by another node. Servers run in the 3
nodes of the system. If a node possesses all the physical resources needed for running a
server for a certain service, it is called a (potential) host for that service. For example
a node with enough computing power and memory that can access the disk(s) storing 3
the "emplyees" database is a potential host for the "employees" database service.
The set of all servers that can run in the hosts defined for a service s forms the team 3

6 3



of servers that can be used to implement s. With present operating systems, a server
for a certain service canl be started in a host node only by another process that runs
in the same node. We assume the nodes have amnezia-crash failure semantics: after
a crash, a node restarts in a predefined initial state independent of the inputs seen
before the crash [Crist9l]. We do not assume any particular network topology: it can
be point-to-point or broadcast channel based.

To make the presentation of Availability Management as simple as possible, we will
assume a synchronous [Cris9IJ communication network. Roughly speaking, a s'n-
chronous network enables any two active servers to communicate within a known.
bounded time, so that no communication partitions are possible (a more elaborate
definition and ways to implement such communication networks are given in [Cris9l]).
The synchronicity assumption enables us to avoid discussing issues related to poten-
tial divergence of states among redundant servers due to partitioning and the need to
restrict activity to majority groups in order to prevent such divergence. We discuss
later extensions to the case of asynchronous communication networks that do not
guarantee a bound on the time it takes for an active server to send a message to
another active server.

A synchronous network allows one to implement three group communication ser-
vices that are fundamental for implementing the replicated data management needed
for implementing automatic availability management: internal clock synchronization,

synchronous atomic broadcast and synchronous membership.

An internal clock synchronization service ensures that the clocks of active nodes are
synchronized within some known constant maximum deviation at any point in real

time and that such synchronized clocks run within a linear envelope of real time.
Protocols for achieving internal clock synchronization in synchronous communication
networks are described in [CASS6], [Cris89J, [HSS84], [1(87], [LMS5], [LL84], [S871,
and [ST871.

A synchronous atomic broadcast service enables any member s of a team A to broad-
cast at any (synchronized) clock time T a message m to the group of active A mem-
bers so that the following properties hold, for some time constant D. If s initiates the
broadcast of m at clock time T, then at T+D, m is either delivered to all A members
that are active or is not delivered to any active member (atomicity). All messages de-

livered are delivered in the same order at each active A member (order). If the sender
s does not fail while broadcasting m, then all active A members deliver m at T+D
(termination). Protocols for implementing synchronous atomic broadcast services for
point-to-point and broadcast channel based networks are given in [BD85J, [CASD85]

and [Cris9O]. All of these protocoL depend on the existence of an underlying internal

7
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clock synchronization service. I
A synchronous membership service enables active A members to agree in a bounded
time on what member failures and recoveries happen in the history of the team. To
achieve this, a membership service organizes active team members into a sequence of
dynamic groups that exist over time, so that the following properties hold, for somem
time constants D and J. New groups are created only in response to failures and
recoveries (stability). All members of a group agree on the membership of t' e group
(agreement). After joining a common group, any two active A members a, b will join

the same sequence of groups for as long as they stay active, so that they see all failure
and recovery events that affect the team A in the same order (order). Any failure of
an active A member f is detected within D clock time units, that is, it leads within j
at most D clock time units to the creation of a new group that includes all active A
members but excludes f (bounded failure detection delay). Any recovery of a member
j leads within at most J clock time units to the creation of a new group that includes j
in addition to all the other active A members (bounded join delay). Several protocols

for implementing a synchronous membership service in point-to-point and broadcast
based networks are described in [Cris91. The protocols depend on the existence of I
underlying internal clock synchronization and synchronous atomic broadcast services.

We assume that clients of a service s address service requests in a location transparent 3
manner. That is, to ask for some operation o of s to be executed, a client simply
passes s.o to the request/reply transport service available on the client's node without

needing to know the location of the servers that implement s. The transport service
routes the request to some subset of the servers for s and then routes the reply back.
It can be connection oriented or connection-less, such as a remote procedure call ser-

vice. To achieve location transparency, the request/reply transport service can make I
use of a registry service that maintains a mapping from server locations to the service
they provide. When a server providing service s starts on node p, it registers with

the registry service the fact that it provides service s on p. When a client on node
q invokes s.o, the local request/reply transport server looks-up s in the registry and

finds out that the s.o request has to be sent to node p. To ensure high availability of
the registry service on which the distributed request/reply transport service depends,
its implementation may consist of a team of replicated servers, that make use of the

membership and atomic broadcast services described above to maintain the consis-
tency of the replicated registry mapping in the presence of failures, recoveries and
concurrently initiated updates. We assume that the request/reply transport service

masks failures of s servers to clients for as long as at least one server for s remains I
active, so that if no timely reply to a service request s.o sent from node q to an s
server is obtained, the request is automatically re-sent to some other s server that has 3
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registered with the registry service.

4 Requirements

The goal of the Availability Management service is to enforce automatically the avail-
ability policies specified for the services offered by a distributed system to clients
(without violating any constraints implied by their synchronization policies). For
example if the availability policy for a service s is (loose-synchronization, 2) and the
primary server fails, the &-ailability Management service is required to first promote
the s backup to primary and then start another s backup, instead of just cold-starting
another primary for s. This will minimize the time s is unavailable to clients, since it
is much faster to promote a backup to primary then to cold-start a primary. Because
the underlying request/reply transport service will automatically re-route client re-
quests to the new primary after it registers as primary for s with the registry service,
clients do not see a service failure: the behavior seen by them is indistinguishable
from that seen when no s primary failure occurs but a request to perform some s
operation is lost and re-transmitted.

To simplify the presentation of the notion of Availability Management service, we
will consider that this service must automatically enforce a single availability policy
for the entire set S of critical services, and that the only reason why a server for some
critical service sES can crash is the crash of its underlying node. From this presen-
tation it should not be dificult to imagine how to deal with the cases when service
implementations follow several different availability policies and when server crashes
occur even if the underlying nodes do not crash. For concretness, we will consider that
the availability policy specified by the system administrator for all critical services is
(loose-synchronization,2). The reason for our choice is that primary/backup server
groups are very popular commercially [Gray86] and that most of the critical services
in the AAS system that we helped design are implemented by primary/backup server
groups [CDD90].

If we denote the set of active system nodes by N, and the set of hosts for a service sES
by H, the Availability Management service is required to maintain a primary and a
backup for s on distinct nodes as long as there exist at least two nodes in N n H and
a primary for s as long as the number of nodes in N nl H is one. If there is a backup
when a primary must be started, then the backup must be promoted to primary, to
minimize unavailability of s to clients (the backup does not provide service, only the
primary answers to client requests). Another constraint implied by the availability
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policy of s is that at no time there should exist two primaries for s. We are not I
concerned here with the local state check-pointing protocols followed by a primary
and a backup to maintain a bound on the distance between their local states or after
a new backup is started. Our view is that check-pointing is an application specific
issue that is orthogonal to the system wide service Availability Management issue.

Following [Cris85], we view the Availability Management service, as exporting two
kinds of operations to two concurrent "users": the human adminisrator and the Ad-
verse Environment. The operations that the system administrator can invoke are 3
start-service(s), stop-service(s), add-host(n), remove-host(n) and start-node(n), while
the Adverse Environment can invoke the crash-node(n) operation. Often, nodes re-
boot automatically after a crash, in which case the start-node operation is not really
performed by the system administrator, but by a third concurrent "user": the time.
In other words, with automatic reboot, the passage of a certain number of time units
will trigger a start-node(n) invocation after a crash-node(n) invocation by the Ad- i
verse Environment. While start-service, stop-service, add-host and remove-host are
down-calls from the Administrator's command interpreter service, the crash-node and

start-node command invocations are up-calls from the underlying node membership I
service.

We specify our Availability Management service by first defining its abstract state 3
and then describing the state transitions that take place in reponse to the above
human and Adverse Enironment operations.

The state of the Availability Management service is recorded by the following con-
stants and state variables:

const P: Set; % the set of all nodes of the system
const S: Set; % the set of all critical services

var N: Set-of-P init {}; % set of active nodes
var H: S-- Set-of-P init A.{}; % hosts for various services
var on: S--Boolean munit k.false; % on(s)=true when sES is started I
var primary: S-- PU{_t_ init A.I; % points to node hosting primary for s
var backup: S--PU{I_} init A..L; % points to node hosting backup for s g
When there exists no primary or backup for sES, the primary(s) and backup(s)
pointers have the undefined value 1. To avoid complications related to load balancing
and load shed, we will assume that all nodes in the system have distinct names that I
are totally ordered and that when a server for s must be started, the free host with
'he highest name is simply chosen to run the server for s. More realistically, the 3
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Availability Management service will have to maintain a load variable that maps
nodes to their load. This variable will have to be periodicaily updated by each node
and used to select the ho3t where a server for s must be started as the lea-st loaded
node (if there is a tie, take the least loaded node with the highest name). Thus,
our example function for selecting the node to start a certain server among a set of
potential hosts A is simply:

select-host(A:Subset-of-P) returns PU{.I
if A={} then I else max(A) fi;

The intended state transitions for the operations start-service, stop-service, add-host,
remove-host, start-node and crash-node exported by the Availability Management
service are as follows.

start-service(s:S) =
if on(s) then inform operator "s already started"
else on(s)4true;

start-servers(N nl IH(s));
fi;

stop-service(s:S)
on(s)+-false;
if backup(s) 5 ±
then stop server for s on backup(s);

backup(s)- _;
fi;
if primary(s)_ ±
then stop server for s on primary(s);

primary(s)+- I;
fi;

add-hosts(h:Set-of-P, s:S)
H(s),- HI(s)U h;

if on(s) then start-servers(N nl H(s)) fi;

remove-hosts(h:Set-of-P, s:S)
H(s)- lI(s) - h;
if backup(s)Eh
then stop backup server for s on backup(s);
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backup(s) I; I
start-backup(s,N A' H(s));

fi;
if primary(s)Ghl
then stop primary server on primary(s);

primary(s)-- I_;

promote-backup(s,N fl nH(s));
fi;

start-node(n)=I

N - N U {n};
for all sES
do if on(s) and n E H(s) I

then start-servers(s,N n ii(s))fi;
od; 3

crash-node(n)

N , N - {n};
for all sES

do if primary(s)=n then promote-backup(s,N nl H(s)) fi;

if back-up(s)=n I
then backup(s) - _;

start-backup(s,(N nl f(s))-{prinmary(s)}); 3
fi;

od;

were the start-primary, start-backup, promote-backup and start-servers state transitions I
are defined as follows:

start-primary(s:S, A:Set-of-P) I
if primary(s)=_t and A $ {}
then primary(s).- select-host(A);

start primary server for s on primary(s)
fi;

start-backup(s:S, A:Set-of-P) - I
if backup(s)=i and A $4 {}
then backup(s) ,- select-host(A);

start backup server for s on backup(s) I
fi;

3
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servers for these services exist at any node, the Administrator Conmmand Interpreter I
service is implement:d by a server running in only one of the nodes (if that node
fails, the administrator can login on another node). When joining the group of active
Availability Management servers, a newly started server follows the state initialization
protocol described in [Cris9l], where the new server gets an older value of the service
state, monitors all updates to that past state until its reception and then applies these
updates to the old state to get an up-to-date state. We will not repea. the description
of that join protocol here. Each Availability Management server has access to the
identity of its underlying node by invoking a predefined function inyid.

The design to be described depends directly on the membership and atomic broadcast
services described in section 3: any update to a replicated state variable is either a
result of an atomic broadcast or of a membership change notification that appears
to the replicated Availability Managers as an atomic broadcast (for more details see
[Cris91])- Because all updates are reccived in the same order [CASD851, [Cris9l] at I
all active Availability Managers, after an Availability Manager j joins the group of
active Availability Managers, its local state variables N, I, on, primary, backup will
go through the same stquence of values as the local variables of any other Availability I
Manager in that was already joined when j joined, and this will hold true until j or in
fail. Thus, when any two members of the group of active Availability Managers learn
about the same event, such as an administrator command invocation or a change I
in the membership of active nodes, they have identical local states, so they reach
identical decisions about what has to be done. For example after a failure of a node
hosting the primary server for s, all Availability Managers decide that the manager I
running in the backup(s) node which hosts the backup server for s, will have to
promote it to primary and that the manager running in the node with the highest
name in the set N n H(s) - backup(s), say n, will have to start a new backup for
s. So, all Availability Managers update their state according to these decisions and
they all ask themselves whether they are the ones running in the backup(s) and n
nodes by evaluating tile miyid = backup(s) and 7nyid = rnax(N n H(s) - { backup(s) })
expressions, respectively. The managers running in the nodes where these expressions
evaluate to true then do the "real" work by locally promoting the backup server for I
s and by locally starting a backup for s, respectively. When more realistic select-host
fu'ctions are used instead of our simple select-host example, it is crucial that the
value of an invocation of select-host depend only upon the replicated state variables I
maintained by each Availability Manager, so that any invocation yields the same
result when invoked in response to the same event at any two members of the group
of active Availability Managers.

After completing the state initialization protocol described in [Cris9l] that initializes 3
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the N, Hi, on, primary, backup variables, an Availability Manager enters an infinite
loop inside which it waits for the following event types: an upcall from the member-
ship service that is a notification of a change in the membership of active nodes (and
hence, in the group of active Availability Managers), an upcall from the atomic broad-
cast service telling about an update to the replicated state variables, or a downcall
from the Command Interpreter running in the same node, that informs the server

about a command issued by the system administrator. The code that implements
the reactions to these events is atomic with respect to synchronization (for simplicty
we do not deal explictly with synchronization issues related to making the parallel

interpretation of these events serializable).

task Availability-Manager

const P,S: Set;
var N: Set-of-P init {};
var 11: S-* Set-of-P: init A.{};
var on: S--Boolean init A.false;
var primary: S-- PU{I_} init A.i;
var backup: S-PUI{L init A..;

initialize(N, If, on, primary, backup);

loop

when receive-from-administrator(command):
case command of:

start-servicr'" on(s)
then sc. iinistrator("already started",s)
else if N i, ý,_j = {}

then send-to-administrator("no active hosts for",s)
else atomically-broadcast ("start-service",s)
fi;

fi;
stop-service(s): if on(s)

then atomically-broadcast("stop-service",s)
else send- to-administrator("already-stopped",s)
fi;

add-hosts(h,s): if hc H(s)
then send-to-administrator( "already-hosts",i,s)
else atomically-broadcast ("add-hosts",h,s)
fi;

remove-hosts(hs): if hntI(s) € {}

15



I
I

then atomically-broadcast ("remove-host"j,hn H (s),s) I
else send-to-administrator("not-hosts" ,h,s)
fi;

endcase;

when receive-atomic-broadcast(message) from p:
case message of: I

("start-service",s): on(s) -- true;
Start-Servers(N nl H(s));

("stop-service",s): on(s) - false;
if backup(s) / I
then if backup(s)=myid

then locally stop backup server for s;
fi;
backup(s)- I;

III I
if primary(s)53 I
then if primary(s)=myid

then locally stoD primary server for s I
fi;
primary(s)-- I;

("add-hosts",h,s): II(s) - lI(s) U h;
if on(s) then Start-Servers(N nl H(s)) fi;-

("remove-hosts",h,s): lI(s) - HI(s) - h; I
if backup(s)Eh
then if backup(s)=myid

then locally stop backup server for s
fi;

backup(s) - _;
Start- Backup(s,N n H(s)); 3

fi;

if primary(s)Eh
then if primary(s)=myid

then locally stop primary server for s

fi;
primary(s)-- I; £
Promote-Backup(s,N nl H(s));

fi;

endcase; ;

when receive-membership-notification(change,n): 3

1
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case change of:
"join": N - N U {n};

for all sES
do if on(s) and n E H(s)

then Start-Servers(s,N nl H(s))
fi;

od;
"crash": N +- N - {n};

for all sES
do if primary(s)=n then Promote-Backup(s,N n Il(s)) fi;

if backup(s)=n
then backup(s) - _;

Start-Backup(s,(N n H(s))- {primary(s)});
fi;

od;
endcase;

endloop;

The Start-Primary, Start-Backup, Promote-Backup and Start-Scrvers procedures in-
voked by the implementation implement in a decentralized manner the abstract state
transitions defined by start-primary, start-backup, promote-backup, and start-servers
of the previous section, respectively,

procedure Start-Primary(s:S, A:Set-of-P);
if primary(s)=I and A $ {}
then primary(s)+- select-host(A);

if prirnary(s)=myid
then locally start primary server for s
fi;

fi;

procedure Start-Backup(s:S, A:Set-of-P);
if backup(s)=l_ and A : {}
then backup(s) +- select-host(A);

if backup(s)=myid
then locally start backup server for s
fi;

fi;

17



I
I
I

procedure Promote-Backup(s:S, A:Set-of-P);
if backup(s) :/- I

then if backup(s)=myid I
then locally promote backup server for s

fi;'I
primary(s) - backup(s);

backup(s) - .;
Start-Backup(s,A - {primary(s)});3

fi;

procedure Start-Servers(s:S, A:Set-of-P); I
Start- Primary(s,A);
if primary(s) # I
then Start-lBackup(s,A - {primary(s)}) 3
fi;

6 Extensions

An extension of the above design that would deal with several services with distinct
availability policies should pose no difficulty at this point. It is sufficient for this U
purpose to keep track for each service S of its availability policy and ensure that
it is automatically enforced along the lines of the previously sketched Availability3
Management service design. Other extensions that would allow the administrator to
taylor the reaction of the Availability Management service to the particular needs of a

system installation by letting the administrator define the reaction that ought to take
place in response to each type of event for each kind of declared availability policy
in a specialized high level programming language are also quite straightforward. An

important extension of the simple design presented here deals with saving the state of I
the Availability Management service on non-volatile storage, so as to enable a quick
restart after a total system failure (possibly due to a general power failure). This is a
non-straighforward problem if one wants to solve it right. We leave it to the reader to I
imagine various possible solutions and analyse their relative merits and drawbacks.

In the reminder of this section we limit ourselves to discuss possible extensions to the I
case of asynchronous communication networks that do not guarantee any bound on
the time needed to communicate between two active nodes. The major difficulty in 3
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such networks is that a process p cannot distinguish between being partitioned from
another process q and a failure of q. This leads to the possibility that the members of
a team A join distinct groups at the same time and see different sequences of updates
to their local states. To prevent such divergence it is sufficient to let updates proceed
only in majority groups. It is possible to design membership and atomic broadcast
protocols that will let any two active team members that continuously join majority
groups see the same sequence of global state updates, including node restarts and
failures despite unbounded communication delays. The main drawbacks of such a
solution are that no availability management will happen when less than a majority
of nodes are active and that there will no bounds on the time it takes to react to events
such as administrator commands and node membership changes. Another alternative
design could be based on a leader that orders all the events happening in the system
by acting as a funnel for them. The hard problem there will be to elect a new leader
uponL failure of the old leader so as to ensure that at no point in real-time there exist
two leaders that could take conflicting actions. A leader based solution will of course
share the drawbacks inherent to any solution based on asynchronous communication:
need for majority presence and no bounds on reaction times.
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EXTENDED ABSTRACT

I Motivation

With the increasing reliance on digital computers in embedded systems, the need for dependable systems
that deliver correct results in a timely manner has become more crucial. Large-scale embedded systems
are being built in diverse applications such as avionics, air traffic control, manufacturing, and patient
monitoring. These systems often have strict availability and timing requirements that affect one another
in subtle ways. For example, availability requirements are often enforced as timing constraints on certain
tasks in the system. Alternatively, missing a deadline on a critical task in a real-time system may result in
a system failure. As real-time fault-tolerant applications become more sophisticated, the software design
and development process has become increasingly more complex. This paper argues that the traditional
approaches for providing fault-tolerance in asynchronous distributed systems is not necessarily appropriate
for time-critical applications.

The motivation for this work is based on two observations:

1, the characterization of design methodologies for fault-tolerant systems based on redundancy in space
or redundancy in time is inadequate for real-time systems; and

2. establishing a global consistent system state based on the causal order of messages among cooperating
processes does not consider the temporal consistency requirements imposed on the data in a system.

2 System State

Fault-tolerance can be defined informally as the ability of a system to provide a service in a timely manner
even in the presence of failures. A common approach for building fault-tolerant systems is to replicate
servers that fail independently. The main strategies for structuring fault-tolerant servers are passive and
active replication. In passive replication schemes [4, 1], the system state is maintained by a primary and one
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or more backup processes. The primary checkpoints its local state to the backups such that a backup can
take over upon detecting a failure of the primary. In active replication schemes [6, 13, 21, also known as the
state machine approach, a collection of identical server processes maintain replicated copies of the system•
state. Updates are applied atomically to all the replicas such that after detecting the failure of a process, the I
remaining processes continue the service.

In a distributed environment, one can view the system as a collection of cooperating processes. The
global system state is the aggregate set of the local states of the cooperating processes. A widely-studied I
approach is to establish consistent global system states as a computation progresses and to roll back to an
earlier system state when a failure is detected. A consistent global system state is defined to be a state that is
reachable from the initial state. Numerous checkpointing/logging-based schemes for establishing a global
system state in a distributed environment have been proposed in the past, e.g., [3, 8, 141. In these approaches,
each process checkpoints its state locally, and the messages between processes are logged synchronously
or asynchronously. Upon detecting a failure, a global system state is established by a rollback to an earlier
point in the computation that could have been reachable from the initial system state.

It has been argued in the past that the real-time and fault-tolerance requir, mnents of a system are not
orthogonal. The difficulty in applying traditional approaches for providing fault-tolerance to real-time
systems is that time is not explicitly considered in defining a consistent system state. In particular, several
distinguishing characteristics of real-time systems must be considered: I

1. liming Constraints: the correctness of a computation is dependent not only on the correctness of its
results, but also on meeting stringent timing requirements.

2. Perishable Data: the data in these systems are perishable in the sense that the usefulness of a data

item decreases with the passage of time.

3. Weaker Consistency Constraints: the semantics of real-time data allows the exploitation of weaker 3
consistency requirements than the causal or total order on the operations in a system.

4. Redundancy in Data Semantics: the characterization of design methodologies based on redundancy 3
in space or redundancy in time is inadequate since the semantics of certain data items allows a stale
or approximate data value to be used. I

Before presenting alternative models for specifying consistent system states of real-time processes. we
will elaborate on the above points. We use two examples to illustrate why a different definition of a system
state is more appropriate for real-time system.

Whether the primary motivation for fault-tolerance is to ensure data integrity or to mask failures at
run-time, the notion of a consistent system state after a failure defines the correctness criteria for different
approaches. The precise definition of a consistent state in a real-time system is complicated by one crucial
factor: a system state in time-critical applications changes by the passage of time. This is a key difference
from asynchronous systems in which time is not considered explicitly in defining a system state. This
has several important implications: First, redundancy management must be predictable; meeting stringent
timing constraints and achieving fault-tolerance requirements may be contradictory goals in some cases.
Second, restoring a system state (by rolling backward or forward) must satisfy certain timing properties
imposed on the data in the system. Since usefulness of real-time data diminishes with the passage of time,
the definition of a consistent system state must include the temporal relationship between data objects.
Third, the ordering constraints, such Lamport's happened-before relation or the total order guaranteed by
atomic multicast, may be weakened in managing replicated data in real-time systems. Finally, the inherent I
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non-determinism of lime-critical systems can be exploited in developing new fault-tolerance strategies. The
imprecise computation technique, for example, exploits data semantics in obtaining timely but lesser quality
results in iteratively improving calculations.

A real-time system may fail to function correctly either because of errors in its hardware and/or
software or because of not responding in time to meet the timing requirements that are usually imposed by
its "environment." Hence, a real-time system can be viewed as one that must deliver the expected service
in a timely manner even in th-e presence of faults. A missed deadline can be potentially as disastrous as a
system crash or an incorrect behavior of a critical task, e.g., a digital control system may lose stability. Since
the logical correctness of a system may be dependent on the timing correctness of other components, the
task of separating logical correctness from timing correctness may be very difficult. Furthermore, timeliness
and fault-tolerance requirements could pull each other in opposite directions. For example, checkpointing a
system state and complex recovery mechanisms will enhance fault-tolerance but may increase the probability
of missing a deadline, Hence, one must explicitly consider timing requirements when defining a consistent
system state. The following example illustrates this point.

Example 1: Airspace Control

Consider an airplane that is moving from airsl-..ce A to an adjacent airspace B. I Different air traffic
controllers are responsible for each airspace. /t. ihe airplane is moving from airspace A to airspace B, the
control must be passed from one controllc: system to the other. Two data objects, OA and OB, reflect which
controller is responsible for the airpl-ne. If OA = 1, controller A is in charge of the airplane. If OA = 0,
the controller A is not responsible for the airplane. Initially, OA = I A OB = 0. The hand-off must take
place as the airplane is moving f,-om one airspace to the other. A safety property of the system is that there
should be a maximum time interval of 500ms during which both data objects are zero, i.e., neither controller
is responsible for the airplane. Suppose a process P1 updates both OA and OB, and P2 and P3 are the
displaying processes for controllers A and B respectively. We use the notation w(O) and r(O) to denote a
write operation and a read operation to an object 0, respectively.

Pi W(OA),w (OB)
P 2  r(OA), w(displayA)

P3 : r(O:.), w(displayB)
If the above safety property (or time constraint) is not imposed on the system, any interleaved execution

of the above operations is acceptable. Consider the following execution sequence:
W(OA), T(OA), (OB),W(OB),...

If the two reads are separated by more than 500ms, the safety property is violated. Thus, the correct relative
ordering of operations does not necessarily ensure temporal correctness. Hence, other constraints must be
imposed to ensure this performance requirement. In this example, all operations in P, must be performed
within 500ms. 03

Fault-tolerance techniques based on checkpointing and message logging ensure that after a failure, a
distributed computation recovers to a global state which is reachable from its initial state. There are several
problems in applying this approach to real-time systems: First, since a real-time process may include time
explicitly in its local state, the definition of a consistent global system state based on partial (or causal)
ordering of messages may not be appropriate. For example, consider the data repository in a flight control

"This is a variation of an example in [101.
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Figure 1: A Distributed Computation I
system. The decision to delay or to land an aircraft is based on the "current" position and status of the
aircarfts being monitored. The system state in the data repository is consistent if the timestamps of different
data items representing aircraft positions are within an acceptable tolerance. Second, restoring the system to I
an earlier state may be unnecessary or even incorrect in these applications. In certain cases, a process may
resume its execution at a predefined state and obtain its input directly from a sensor after a failure. Third,
since a timing constraint may be imposed on the execution of a process (or a collection of processes), a I
complex recovery mechanism and resuming execution in an earlier state may result in missing the deadline.

Example 2: Distributed Computation 3
Figure 1 illustrates three cooperating processes P1, P2 and P 3 with the corresponding checkpoints

S1, S2 and S3. The messages labeled a from process P1 to P2 crosses the recovery line established by
the checkpoints. In an asynchronous environment, to establish a consistent cut, message a is logged
synchronously or asynchronously by the sender or the receiver. If the processes in Figure 1 are real-time
processes, several other alternatives for establishing a consistent system state may be possible. If the state I
variable v updated by a can be extrapolated from its previous values, then it may be unnecessary to log

the message to establish a consistent system state. Alternatively, if process P 2 is a periodic process and
the previous value of v (prior to the checkpoint at S2) is within a predefined distance from the new value I
of v, this previous value of v can be used in case the process suffers a failure after the checkpoint T2 and
before the subsequent checkpoint. Another alternative may be to take checkpoints based on absolute time
if the processor clocks are synchronized within a know value e. For example, as shown in Figure 2, if each I
process takes a checkpoint at the local time T, then a recovery interval [T - E, T + c] can be established.
This recovery interval can be used to define a consistent global state to which the system can be restored

after a failure.
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Figure 2: A Recovery Interval

3 Real-Time Models to Support Fault-Tolerance

In this section, we propose two models for defining a system state in a real-time computation. The models
introduce two complementary approaches to providing fault-tolerance in real-time systems. Both approaches
incorporate the notion of time into the definition of a consistent system state. Before presenting the models,
we examine brief a classification of data dependencies in a real-time computation:

"* Temporal Dependency: A collection of data items whose timestamps must be within a predefined
value e of each other in a system state [10].

"* Value Dependency: A collection of data items whose values must be within a predefined tolerance b
in a system state.

"* Causal Dependency: Existence of a data item is dependent on the existence of another data item.

3.1 Server State

In a real-time system, it is important to use the values of data objects that have existed at approximately the
same time. For example, an air traffic controller monitoring the positions of several aircrafts must view the
coordinates that are taken within a very short interval. Hence, a set of temporal constraints must be enforced
on the data objects in a system. These temporal constraints must be considered when defining a consistent
system state in a real-time environment. Consequently, a system state restored after a failure must satisfy
these temporal constraints. A crucial observation is that the decision on when to update a backup copy is
often driven by the staleness of the data object rather than the relative (causal) order of message exchanges
between processes.

In this model, a real-time system is seen as a collection of services provided in a timely and dependable
manner. Each service is provided by a set of replicated servers running on multiple processors. (The
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CFiure 3 A Server State: Objects and ConstraintI

replication strategy for each service can be based on active or passive replication.) We define the stateI
of a system as the collective states of the underlying servers. A server state, in turn, is defined by the
set of'objects (including thie values and timestamps) internal to that server. Tlhis is where we depart from

traditional approaches to defining a system state. A consistent state of a server is defined by the set of the
temporal and value constraints imposed on the objects in the server. la other words, a consistent server state
is the temnporally correct snapshot of the objects maintained by the server. In a automated process control

system, for example, the algorithms to monitor and control an cxternal device are executed periodically.
The result from the execution of an algorithm can be updated on a backup server to tolerate against the
primary failure. The state of this server is the set of input and output values during each iteration of the

program execution. Thbis is the state that must be restored (in a timely fashion) if the primary server fails,
Figure 3 illustrates a server state. The objects in a server are denoted by circles; the constraints imposed

on collections of objects ore denoted by squares. An update to an object or the passage of time must preserve
the constraints imposed on the objects. A definition of a server state based on the notions of temporal and
value dependencies is given below.

Definition: I
A server strae is defined to be a ordered collection of objects (01, 02,state 0b) with v(to ) and t(0,)
denoting the value and timestamp of object O. I
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system state at time t, denoted by S(t), is defined as 3
a) < S I(t), s2(t), .. , s,(t) >, such that s,(t) is the local state of the process p, at time t, where t,
mmzn(t, r1) and r, is the time of the receipt of the first message by p, that was sent by another process p,
after " reached its local state s,(t).

b) Vm,<(t) V % _ ,j < n, such that m,,,(t) is the set of fifo messages from p, to p3 timcstamped by p,
before its local time t, and not received by p, until after its local state s1(t), 3
Part (a) in the above delinition refers to the collection of local process states and pan (h) covers the hwica!
message queue between each pair of processes.

The above delinition eastablished a recovery interval to which a system can be restored after a failure. I
However, it still attempts to preserve the causal order when establishing a consistent system state. It is
possible to relax the above definition such that a weaker notion of a system state can be obtained. One
possible approach is to enforce constraints similar to those in section 3.1 to determine whether an update (a I
message) from a sender should be logged during the recovery interval.

4 Concluding Remarks

As embedded real-time systems become more sophisticated, the ability of tihe system to provide dependable 3
and timely service becomes critical. The focus of this extended abstract was on alt - oalive models for
delining a system state in a real-time computation. It was argued that the traditional approaches to fault-
tolerance in asynchronous systems are not suitable for a real-time environment. Recovering a system to a
consistent state after a failure must consider the timing requirements imposed on the system. The two models
that were presented in this abstract consider time explicitly in defining a corsistent system state. In one
model, a system state consists of a collectior of temporally related objects. A system failure would require I
restoration of the system to a state in which the temporal and value dependency requirements among objects

are satisfied. In the second model, a system state is defined at an absolute time. Due to the approximately
synchronized processor clocks, a recovery interval is established to which a system can be restored after a 3
systeom failure.
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Abstract

In fault-tolerant distributed systems, different non-faulty processes may arrive at different
values for a given system parameter. To resolve this disagreement, processes must exchange
and vote upon their respective local values. During voting, faulty processes may attempt
to inhibit agreement by acting in a malicious or "Byzantine" manner. Approximate Agree-
ment defines a form of agreement in which the voted values obtained by the non-faulty
processes need only agree to within a predefined tolerance. Approximate Agreement can
be achieved by a sequence of convergent voting rounds, in which the range of values held
by non-faulty processes is reduced in each round. Existing convergent voting algorithms
assume complete connectivity between processes. Where the physical connectivity is in-
complete, messages must be relayed between processors to simulate complete connectivity.
For large, sparsely connected systems, the message traffic associated with message relaying
could be prohibitive, making Approximate Agreement infeasible for such systems.

This paper presents a means of implementing convergent voting in large sparsely connected
networks without the massive communication overhead incurred by the global relaying of
messages. Simple expressions are presented for the convergence rates and robustness of
a broad family of low-overhead locally convergent voting algorithms in the simultaneous
presence of multiple fault modes. These expressions are employed to determine the ro-
bustness of local convergence in some commonly used partially connected networks. Issues
affecting global convergence are also addressed, and the extension of the results to several
related problems is discussed.
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1 Introduction 3
As distributed computing systems become larger, there is a growing conflict between the 3
increasing need for fault-tolerance and the computational overhead required by fault-

tolerance mechanisms. Even in systems containing less than a dozen processing nodes,

fault-tolerance overhead can consume a majority of the processing power [Pal85, Cze85].

In contrast, systems are now being built with hundreds or thousands of nodes. This pa-

per presents a method of adapting one important fault-tolerance mechanism to very large

systems while maintaining the overhead of a small system.

An important issue in distributed fault-tolerance is ensuring that all non-faulty processes

agree on the values of critical data items despite active interference from faulty processes. 3
This issue arises whenever non-faulty processes can legitimately form differing "opinions"

regarding a specific value. They must then exchange and vote upon their local values to

arrive at a single consensus value. If a faulty process is constrained to send the same

erroneous value to all non-faulty processes, then simple majority voting is sufficient to

provide immediate agreement. It is only necessary that the majority of the processes be

non-faulty. Reaching agreement becomes significantly more difficult if a faulty process is

permitted to send conflicting values to different non-faulty processes. A faulty process 3
with this property has been called malicious, two-faced, Byzantine, or asymmetric. I
The classic form of distributed agreement, Byzantine Agreement, requires that all non-

faulty processes obtain identical voted values for any set of initial values. However, many

applications do not require non-faulty processes to achieve exact agreement. Rather, they

need only agree on a value to within a specified tolerance. This state, called Approzimate

Agreement, ib useful in areas such as sensor data management and fault-tolerant clock

synchronization [Kie88, Lam85, Lun84, Sch87, Tha89]. Given an arbi. -arily small positive

real value c, Approximate Agreement is defined by two conditions [Do183, Do186]:

Agreement - The voting algorithms executed by all non-faulty processes eventually halt I
with voted values that are within c of each other.

Validity - The voted value held by each non-faulty process is within the range of the

initial values held by all non-faulty processes. 3
Most Approximate Agreement algorithms employ multiple rounds of message exchange

interleaved with a convergent voting algorithm which guarantees that the range of values
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held by the non-faulty processes is reduced in each round [Do183, Do186, Kie9l, Laln85,

Vas89]. This property, called single-step convergence, guarantees that the range of values

will eventually be less than c, given enough rounds.

Large distributed systems rely upon partially connected networks for interprocess comnluu-

nication [Fen8l, Hwa84]. However, convergent voting algorithms have been derived only

for systems which are completely connected. In systems with partial physical intercon-

nections, the voting processes must relay messages such that the system connectivity is

logically complete. If the total number of processes is large, the global exchange of lo-

cal values can consume a great deal of time and communication resources. As a result,

convergent voting algorithms are not practical in large sparsely connected systems.

Most analyses of convergent voting assume that all faults exhibit asymmetric or Byzantine

behavior [Do183, Do186, Lam85]. In reality, asymmetry occurs only under complex and

improbable conditions. Thus, if coincident faults occur, it is highly unlikely that all faults

will be Byzantine in nature. Recently, the behavior of convergent voting algorithms has

been analyzed in tile simultaneous presence of three distinct modes of faults: asymmetric

(Byzantine), symmetric, and benign (self-incriminating) [Kie9l]. This analysis showed

that convergent voting can be significantly more robust than predicted by the single-mode

Byzantine fault model.

This paper presents a means for limiting the overhead of achieving Approximate Agreement

in large sparsely connected systems. The general approach is to prohibit the relay of

convergent voting messages. Thus, each processor performs convergent voting only with

its immediate neighbors. The objectives are: (1) to present low-overhead convergent voting

algorithms which function without message relay, (2) to analyze the convergence rates of

these algorithms using a mixed-mode fault model, (3) to determine the theoretical bounds

on their fault-tolerance as a function of the topology and connectivity of the network.

These results make Approximate Agreement feasible for very large distributed systems.

They thus facilitate confident design and verification of distributed processes such as clock

synchronization and redundant sensor management. In addition, the methodology em-

ployed is shown to be extendable to several related problems.
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2 Background 3
Distributed systems have been partitioned into two distinct classes, synchronous and asyn- 3
chronous systems [Dol83]. In a synchronous system there are finite bounds on the pro-

cessing and communication delays of non-faulty processes. There is thus a point in time

by which any process executing a convergent voting algorithm will have received all data

from all non-faulty processes. Any data arriving after that time must have come from a

faulty process. In an asynchronous system, no finite bounds on process operation exist, so I
that a process might have to wait "forever" to receive data from all non-faulty processes.

It is thus impossible to differentiate between a slow non-faulty process and a "dead" faulty I
process.

This paper addresses synchronous systems only. The synchronous system model is most

representative of real-time systems, and is applicable to both data voting and clock syn- 3
chronization. In addition, synchronous systems require the participation of fewer processes

than asynchronous systems [Do183, Doi86]. This fact can be of great importance in sparsely

connected systems, where communication is constrained. A similar approach can be ap-

plied to asynchronous systems to produce results analogous to those presented herein.

Most of the previous research in convergent voting assumed a completely connected net-

work of processors. In systems with partial interconnenction, messages must be relayed 3
such that each non-faulty process receives a value from every other non-faulty process.

Two approaches have been taken to reduce the overhead of global message exchange in 3
partially connected systems. The first approach considers the system to be hierarchically

composed of processor clusters [Shi87]. Within each cluster, all processors are completely

connected. One processor in each cluster is also connected to one processor in another

cluster such that the set of clusters is completely connected. It is then possible to set

one tolerance on agreement within a cluster, and a looser tolerance on agreement between

clusters. The second approach employs special purpose communication hardware to in-

crease the efficiency of handling relayed messages [Ram90I. However, this approach does 3
not reduce the overall complexity of the message traffic. l
Several convergent voting algorithms have been derived, such as the Fault-Tolerant Mean

[Dol83], the Fault-Tolerant Midpoint (Mean of Medial Extremes) [Do183), the Interactive

Convergence algorithm [Lam85], and Dolev's Optimal algorithm [Do1861. Each algorithm

required ad-hoc proofs of its fault-tolerance and convergence properties. Furthermore,

these analyses were only valid under a single-mode Byzantine fault model.

34



In recent work, a large family of voting algorithms was defined, called Mean-Sub'equence-

Reduced (MSR) algorithms [Kie9l]. The MSR family encompasses several of the previously

known voting algorithms. Simple expressions have been derived for the fault-tolerance and

convergence properties of any MSR algorithm under a mixed-mode fault-model. The work

presented here extends this analysis to partially connected systems with no relay of voting

messages. We begin with some necessary definitions and background.

2.1 Real-Valued Multisets

Approximate Agreement requires the manipulation of multisets of real values. A multiset

is a collection of objects similar to a set. However, it differs from a set in that the elements

of a multiset need not be distinct. For example, a set of real numbers contains no more

than one occurrence of any given value, while a multiset of real numbers may contain

multiple occurrences of the same value. The number of times a particular object (value)

appears in a multiset is called the Multiplicity of that object. A finite multiset V of real

values may be represented as a mapping V : R --+ R. For each real value r, V(r) is defined

as the multiplicity of r in V. The size of V is V = Ivi FIE V(r).

An alternative representation for a multiset of real numbers is a monotonically increasing

sequence of the real values of its elements, i.e. V = (vl, ... ,vv) ordered such that:

vi :5 vi+1 V i E {1, ... , V - 1} [And63, Liu85]. Both representations of a multiset are

equivalent, but for certain operations one form or the other is more convenient. To avoid

confusion, we use upper-case symbols for multiplicities in the real-to-integer mapping form,

e.g. V(r). Similarly, we use angle-braces and lower-case symbols for elements in the

sequence form, e.g. V = (vi, ... ,vv) = (vi) Vi E 11, ... ,V}.

Real-Valued Parameters - A multiset of real numbers has several useful real-valued

parameters.

min(V) = min (r E R: V(r) > 0) = vi; the minimum value of the elements in V.

max(V) - max (r E R: V(r) > 0) = vv; the maximum value of the elements in V.

p(V) = [min(V),max(V)] = [vi,vv]; the real interval spanned by V. p(V) is

called the range of V.

b(V) imax(V) - min(V) = vv - vi; the difference between the maximum and

minimum values of V. b(V) is called the diameter of V.

35



I
mean(V) = The arithmetic mean of the real values of all elements of V; 3

mean(V) = E (V(r) r V(

I

Multiset Relations - Two multisets U and V may be related by:

Union: Let W =VUU. Then W(r) =max[V(r),U(r)] V r E R.

Intersection: Let W = V n U. Then W(r) =- mini V(r), U(r)] V r E R.

Sum: LetW=V+U. Then W(r)= V(r)+U(r) Vr C3. 3
Difference: Let W = V-U. Then Vr E3: 3

W V(r) - U(r) if V(r) > U(r)
= 0 otherwise

Subsequences - Given two sequences U and V, U is a subsequence of V if all elements 3
of U are selected from the elements of V, and arranged in the same order as their relative

order in V. While a subsequence is also a submultiset, it has the important property that

the index of an element in V is the sole criterion for its inclusion in U. Thus, the function

which selects elements of V to be included in U is a mapping from the indices of U to the

indices of V.

Formally, let Iv = {1, ... , V} be the set of indices for multiset V, and let Iu = {1, ... , U} 3
be the set of indices for multiset U. Then, U is a subsequence of V if there is a fixed one-

to-one (injective) mapping function k : Iu -) Iv which preserves order. Thus, each index 3
i E {1, ... , U} corresponds to exactly one index k(i) E {1, ... , V}, where k(i) < k(i+ 1).

It follows that ui = vk(t). Furthermore, since V is a monotonically increasing sequence of

real numbers, ui _5 u(i+l) V e {l, ... , U - 1}.

2.2 Multiple Mode Fault Model

In real-world systems, truly Byzantine behavior occurs only under highly improbable con- 3
ditions. Accordingly, Meyer and Pradhan [Mey87] have partitioned the space of all possible

faults into two distinct modes: Benign faults, defined as those which are self-incriminating, 3
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or immediately self-evident to all non-faulty processes, and Malicious faults, defined as
all faults which do not qualify as benign. Thambidurai and Park [Tha88] have further

partitioned malicious faults into two sub-modes: Symmetric faults, whose behavior is per-
ceived identically by all non-faulty processes, and Asymmetric faults, whose behavior may

be perceived differently by different non-faulty processes.

The total number of faulty processes t in a system is given by t = a + s + b, where a

is the number of asymmetric faults, s is the number of symmetric faults, and b is the

number of benign faults. It has been shown that if all faults are treated as asymmetric,
then convergence is possible only if N > 3t + 1 [Dol831. This is the standard single-

mode Byzantine fault model. Similarly, if all faults are treated as symmetric, then simple
majority voting is sufficient, so that convergence can be guaranteed if N > 2t + 1. Finally,

if all faults are benign, then only one non-faulty process is required, i.e. N > t + 1.

The results to be presented here are based on the simultaneous presence of all three fault

modes. Using the mixed-mode fault model, N is determined as a function of a, s, and

b, rather than t. This model is complete in that all possible fault modes are considered.

However, it is not unrealistically conservative, as is the single-mode Byzantine fault model.

2.3 Convergence in Completely Connected Systems

Single-step convergence is formally defined in terms of the following.

Vi = The multiset of values received in one round by arbitrary non-faulty process i.

V = MV2I. If less than V values are received, then an arbitrary default value is chosen

for each missing value so that V is identical for all non-faulty processes.

Ui - The submultiset of correct values in Vi, i.e. those values generated by non-faulty

processes.

Uinj = Ui n Uj, the multiset of correct values received identically by two processes i and

j. With complete connectivity, Uinj is identical for all non-faulty processes. Uinj

may thus be taken as the multiset of correct values received by all non-faulty

processes.

Each non-faulty process i executes a convergent voting algorithm, producing voted value

F(V1 ). A voting algorithm is convergent if both of the following conditions are true for

every voting round:
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I
[C1 For each non-faulty process i, the voted value is within the range of correct values,

i.e. F(V,) E P(Uinj).

[C2] For each pair of non-faulty processes, i and j, the difference between their voted

values is strictly less than the diameter of the multiset of correct values received,

i.e. IF(V3 ) - F(Vj)I •_ C 6(Uinj), where 0 < C < 1.

Parameter C is the Convergence Rate of a voting algorithm, the primary measure of its 3
effectiveness. The Robustness of a voting algorithm is the minimum number of processes

N required to tolerate t faults. 3
2.4 MSR Voting Algorithms 3
In completely -onnected systems, convergence properties have been determined [Kie9l] for

an entire family of voting algorithms with the general form:

F(V) = mean [Sel,, (Red' (V))].

Function Red', called the Reduction function, removes the -r largest and r" smallest ele- 3
ments from multiset V. The function Sel,, called the Selection function, selects a submul-

tiset of a elements from the reduced multiset Red' (V). If Sel, produces a subsequence

of Red" (V), then F(V) is the Mean of a Subsequence of the Reduced multiset. Voting

algorithms with this property are called Mean-Subsequence-Reduced (MSR) algorithms

[Kie9l].

Members of the MSR family differ from each other only in their definition of the selection 3
function Sel,. Simple expressions have been found for the convergence rate and robustness

of any MSR algorithm in a completely connected system. These results show that it is 3
advantageous to discard recognized benign errors prior to voting provided that all processes

do so. Thus, given a total of N processes containing b benign faults, V = N - b. 3
Robustness - For a completely connected synchronous system containing a asymmetric I

faults and s symmetric faults, it has been shown that an MSR voting algorithm can be

convergent only if [Kie9l]: I

r > a + s (2.1)

: > 1 a=O (2.2) 3
> 2: a>0
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V > 2r+ max(a + 1,). (2.3)

Substituting the minimum allowable values for o, and r from (2.1) and (2.2) into (2.3)

shows that a convergent MSR voting algorithm may exist only if:

rŽ>_ 7- a+a (2.4)

V>V - 3a+2s+l (2.5)

hence: N>N = 3a+2s+b+l. (2.6)

Convergence Rate -- An important result of [Kie9l] is the ease with which the con-

vergence rate C can be determined for any MSR voting algorithm. To begin, we de-

fine the Medial Multiset M = Redr(V) = (ina, ... ,mM), and the Selected Multiset

S = Sel., (M) = (si, ... , s,). By the definition of an MSR algorithm, S is a subsequence

of M. Thus, if g is an index into S, then for each integer g E {1, ... ,oa} there exists

exactly one integer k(g) C {1, ... , M} which guarantees that sg = mk(g).

Given two indices g, h E {1, ... ,Ia} where g < h, we define Ak(g,h) as the number of

elements in M spanned by elements (s, ... , sh) in S, i.e.

Ak(g,h) = [k(h)-k(g)]. (2.7)

If g = h, then Ak(g, h) = 0. However, if g < h, then Ak(g, h) is the number of elements

of M in the submultiset (rk(g)+l, -... ,k(h))-

For a given number of asymmetric faults, a, it will be useful to know the minimum value

of (h - g) for which Ak(g, h) > a. Thus, for each g E {1, ... , cr}, we define the quantity.

Ag as follows:

IF: Ak(g,c) > a,

THEN: Ag = the minimum value of (h - g) such that Ak(g, h) > a,

ELSE: A. does not exist for this value of g.

The ELSE clause is required because if Ak(g, o) < a, then there is no h E {g + 1, ... ,O*}

for which Ak(g, h) > a. Thus, if A. exists, then Ak(g,g + Ag) > a.

Finally, we define the parameter y as:

= max (Ag). (2.8)
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I
Thus, given any g E {1, a.. ,- -y}, it is assured that Ak(g,g + y) > a. In other 3
words, the submultiset (s,, ... ,sg+,) is guaranteed to span a elements of M, for all

9 E {1, ... ,I - Y}. It has been shown tKie9l] that the convergence rate of an MSR

algorithm is:

7. (2.9)

As a practical matter, obtaining the values of y and o, is relatively simple, given constants I

M and a, and a specified selection function Sel,. Parameter o, is just the number of

elements selected by Sel, (M). To determine -y, one simply determines A g for each g I

{1, ... , oa} by inspection and selects the maximum thereof. If there is no value of g for

which A. exists, then -y does not exist, and the algorithm is not convergent. 3

3 Local Convergence with Partial Connectivity I

A partially connected system differs from a completely connected system in that a given I

process does not receive values from all non-faulty processes. Rather, it receives values

only from a specific subset of processes. There are now two types of convergence to be 3
considered: local convergence over a specified subgraph, and global convergence over the

entire system graph.

This section presents theoretical bounds on the ability to achieve local convergence in

partially connected systems. The results of [Kie9l] are extended to include the quantitative

impact of topological parameters such as degree. As before, simple expressions are obtained

for the convergence rate and robustness of synchronous MSR algorithms under the mixed- I
mode fault model. For brevity, the results must be presented without proofs. The reader

is referred to [Kie9la] for detailed proofs. I

The following constraints are placed on the system: 3
1. The system topology is a non-hierarchical, regular, homogeneous, undirected graph

of N processing nodes, each with degree d.

2. Messages received by a voting process may not be relayed to another process. Thus, I

the physical and logical connectivity are identical. Each voting process receives its

own value as well as those of its immediate neighbors so that V = d + 1 for all

non-faulty processes.
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3. N >> V so that "wrap-around" effects can not assist the local convergence process

in a given voting round.

The following sets and multisets describe the relationships between the values received by

two nodes i and j in a partially connected system.

Pi = The set of processes whose values are receivable by process i (Pj is similarly

defined for process j).

Pinj= Pi n Pj, the set of processes whose values are receivable by both process, i and

process j.

Piuj = Pi U P3 , the set of processes whose values are receivable by process i, process j,

or both.

Uinj = The multiset of all values generated by non-faulty processes in Pinj.

Uiuj = The multiset of all values generated by non-faulty processes in Piuj.

In a completely connected system, Uinj = Uiuj. However, in a partially connected system,

Uinj C Uiuj. We therefore define two types of local convergence for partially connected

systems.

Intersection Convergence: Given a voting algorithm F(V), two processes i and j are

Intersection Convergent if the following conditions are both true:

[I11 F(V,) E p(U,n), and F(V 2 ) E p(Uini),

[12]1 F(V) - F(Vj)j 1- C6(Uin), where 0< C < 1.

Union Convergence: Given a voting algorithm F(V), two processes i and j are Union

Convergent if the following conditions are both true:

[Ul] F(V1 ) E p(Uiuj), and F(Vi) Ep(Vuj),

[U21 IF(Vi) - F(Vi) I < C 6(Uiu3 ), where 0 < C < 1.

A major difference between completely connected and partially connected systems is the

strategy for handling benign faults. In a completely connected system, benign faults can

be ignored because all processes can delete the benign errors from V and vote with a

smaller sized multiset. However, in a partially connected system, no fault is self-evident
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to all processes. Thus, ignoring self-evident faults would cause differrent proccsses to vote 3
using different sized multisets so that V would not be identical for &H processes. Thus,

only symmetric and asymmetric faults are considered in this analysis, leaveing I a

3.1 Intersection Convergence 3
The conditions necessary to ensure that two processes i and J are lntersectioii Convergent

can be derived as a variant on the completely connected system previously described. We

begin with the following definitions:

a =The number of asymmetrically faulty processes in P,,;.

s = The number of symmetrically faulty processes in P, 1. 3
x = lPit - TPicj = TPA - IP"cj,, the number of processer whose values are receivable by

either i or j, but not by both. I

Each procrss, x, C {P,\Pcj} comninunicates with process i, but not with process j,

Similarly, each process, z, E {Pj\P,r.} communicates with process J, but not with

process i. In the worst case, two processes x, and zx can send different values to processes

i and j, respectively. Since x. and x. are not members of Pn,, their values could be, outside

of p(U,0 j). Thus 2ach process pair (i,,x,) can have the same impact on V, and V. aS a

single asymmetrically faulty process in P,,V. This effect can occur regardless of the fault

status of xi and zj. There are X such process pairs, which can behave like x a&symmetric I1
faults. We thus define A' as the variant on A9 obtained by substituting ( a X) for a.

IF: Ak(g,ao) >_ (a + x), 3
THEN: A' = the minimum value of (h - g) such that Ak(g, h) > (a 4 X),

ELSE: A' does not exist for this value of g.

Parameter -y' is then the corresponding variant on -y, i.e.:

m' = Ema (Ax). Iv gE(l . , )

Thus, given any g E {1, ... ,o - y'}, it is assured that Ak(g,g + -y') ? (a + 1). 3
It can be shown that an MSR algorithm can be Intersection Convergent only if [Kie9la]:
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S{> [ :[a+x]>0 (3.2)

V > 2Tr+maz([a+x]+1,a). (3.3)

Furthermore, the convergence rate of the algorithm is:

C -(3.4)

Using the minimum allowable values for a and -r from (3.1) and (3.2), an Intersection

Convergent MSR voting algorithm may exist only if:

r > ,- (a+ s) + X (3.5)

V > V1 = 3a+2s+I + (3 X). (3.6)

The minimum size of P1 -j can be derived from (3.6) by noting that lPinil = V - x. Thus,

Intersection Convergence between processes i and j is possible only if:

I IPtnrj > (3a + 2s + 1) + ( 2 X). (3.7)

3.2 Union Convergence

S Union Convergence requires convergence within p (Ui~3 ) rather than p (Urj). Accordingly,

it can be shown that Union Convergence is possible under less restrictive conditions than

j Intersection Convergence.

Two processes Xi E {Pi\Pini} and x3 E {P,\Pin-} can still send two different values to

processes i and j respectively. However, if xi and zx are both non-faulty then both values

are within p (U1 u3 ). Thus non-faulty (xi, ,z) pairs have less impact on Union Convergence

i than on Intersection Convergence.

We retain the previous definitions that a and s are the number of asymmetric and sym-

metric faults, respectively in Pin,. We then define:

II f = The maximum number of faults in either {Pj\Pnj} or {Pj\P1 nj}, regardless of

the fault modes exhibited.

It can be shown that an MSR algorithm may be Union Convergent only if [Kie9la]:

S>_> a+S+f (3.8)
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I
r > 1 [a+ x] > 0

V > 2r+maz([a+xl+1,a). (3.10 I

Applying the minimum values for a and r yields the bounds:

T > - = (a+s)+ f (3.11) 5
V > Vu- (3a + 2s + 1) + (x + 2f) (3.12)

TPinji > V-x = (3a + 2s + 1) ý- (2f). (3.13) 5
If an MSR algorithm is Union Convergent, then the convergence rate is identical to that I
for Intersection Convergence, i.e. C = y'/cr- I

3.3 Summary I
Table 1 summarizes the relevant parameters for convergence in completely connected sys-

tems and for Intersection Convergence or Union Convergence in partially connected sys- -
tems. The listed bounds on r and V are minima, beneath which convergence can not

be guaranteed. These bounds are tight, because there exists an MSR algorithm which I
is convergent with the listed minimal parameters. That algorithm is the Fault-Tolerant

Midpoint [Dol83], in which Sel, (M) selects the two extrema of M. T' -, S = {ml, mm}

so that or = 2, the minimum value allowed by (2.2), (3.2), and (3.9) for a > 1.

4 Network Examples I
The results summarized in Table 1 show the general bounds on convergence in regular

homogeneous network graphs. Applying these results to specific error scenarios in selected I
interconnection topologies illustrates the relative robustness of these networks for both

types of local convergence. 3

4.1 Mesh Networks 3
Three common mesh networks are shown in Figure 1, with degrees d = 4, d = 6, and d = 8,

respectively. Since each node also receives its own values, these degrees yield V = 5, V 7,I
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I

Completely Partially Connected
Connected

IIntersection Union

r,=(a+s) T,=(a+s)+x ru,=(a+s)+f

V, = (3a + 2s + 1) Vi = (3a + 2s + 1) + (3X) Vu = (3a + 2s + 1) + (x + 2f)

IpinjlP=N=V+b IPmnjI_(3a+2s+1)+(2x) IPinhil>(3a+2s+1)+(2f)

IAk(g, g + 7) >_ a tAk(g,g+-+') Žý> a+X Ak(g,g+-y') -Ž:> a+X

I C= -f/ c = cr' c = y'I

I Table 1: Summary of Convergence Parameters

and V = 9, respectively. For each network, two nodes are selected and labelled i and j such

that IP1jt, is maximized. In Figure 1, the nodes enclosed within a dashed box comprise

' Pij for that mesh.

Inspection of Figure 1 reveals that for the chosen (i,j) pair, the number of non-shared

I values received by each node is X = 3 in all three meshes. In the best case of a fault-free

system, Table 1 shows that Intersection Convergence is possible only if V > V1 = 3X + 1 =

I (3 x 3) + 1 = 10. Since VI > V for all three meshes, there exists no MSR voting algorithm

which is Intersection Convergent for an) of these systems.

I In a fault free system, Vu = X+1 = 3+1 = 4. Thus, all three meshes are Union Convergent

in the fault-free case. Assuming a single-fault scenario, the worst case would be if that

fault were asymmetric, in which case VU = 3a + X + 1 = 3 + 3 + 1 = 7. Thus, in any

single-fault scenario, both the Hexagonal and Octagonal meshes are Union Convergent. It

can also be shown that the Octagonal mesh can tolerate a double fault as long as a <1,

while none of these networks can tolerate a double asymmetric fault or any triple fault.
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I

a: Quadratic Mesh b: Hexagonal Mesh c: Octagonal Mesh I
Figure 1: Common Mesh Networks

4.2 Hypercubes U
In a hypercube, the degree d = log2 (N), so that V = log 2 (N)+ 1. Each node is connected 3
to all nodes whose binary address is at a Hamming distance of unity from its own address.

Thus, for any two nodes i and j, IPinjl <_ 2. By definition, X = V - jPjj > V -

2 = log 2(N)-1.

From table 1, the fault-free condition for Intersection-Convergence is V1  = 3 X + .3
1 = 3 [log12 (N) - 1] + 1 . Therefore, an Intersection Convergent MSR algorithm can

exist for a hypercube only if: -

v >vI,
V > 3 X+1,

log2 (N)+1I > 3[log2 (N)-1]+1,-3 I
log2 (N) < 2

- 2

Since log2 (N) must be an integer, the largest hypercube for which an Intersection-Conver- I
gent MSR algorithm could exist is defined by log 2 (N) = 1, or N = 2. This is the trivial

system comprised of two nodes connected by a single link. £
Performing a similar analysis for Union-Convergence yields: 5

V> VU,

V >x+, I
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log2 (N)+l + > (log2 (N)-l)+1,

log2 (N) + I-> log2 (N).

Thus, any fault-free hypercube will be Union Convergent. However, any single fault within

Pjuj will add at least 2 to the right-hand side of this expression, making nodes i an(; j

non-convergent.

5 Continuing Research

Table 1 shows the local convergence properties of MSR algorithms in regular homogeneous

networks. These results and the methods used to obtain them are serving as the basis for

further research on a number of related problems.

5.1 Global Convergence

For most system applications, the goal of convergent voting is to achieve Approximate

Agreement on a global level, i.e. to reduce the range of values held by all non-faulty

processes. While local convergence is a necessary pre-condition to global convergence, it

is not by itself sufficient to guarantee global convergence. The existence and rate of global

convergence also depend on the topology of the system, the distribution of initial values,

and the distribution of faults throughout the system.

Single-step local convergence does not necessarily produce single-step global convergence.

At the global level convergence may be asymptotic rather than immediate [Fek90]. There

may be a delay of several rounds before the global diameter of correct values begins to

decrease. Thus, a single-step convergence rate is an inappropriate performance metric for

global convergence. Two metrics of interest are the maximum number of rounds required

before the first reduction in global diameter, and the long-term average (or asymptotic)

convergence rate. A sub-family of MSR algorithms has been identified which appears to

minimize both of these metrics. Current efforts are directed at quantifying the performance

of the global convergence process. Recent results suggest that global convergence can be

guaranteed only if:

1. The fault-free system can achieve local Union Convergence between nearest neighbor

nodes,
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I
2. The number of errors received by any non-faulty node does not exceed the fault- 3

tolerance limits set in Table 1 for Union Convergence with its nearest neighbors. I
Examples have shown that if a single non-faulty node fails to meet condition 2 above, then

the entire system will become non-convergent. These examples indicate that global con- -
vergence is extremely sensitive to the clustering of faults. General expressions describing

the precise conditions required for global convergence to occur have not yet been derived. £

5.2 Asynchronous Systems 3
In asynchronous systems, there are no bounds on the processing time or message delivery I
delay for non-faulty processes [Dol83]. Nonetheless, convergence is still possible. Using

the single-mode byzantine fault model in completely connected systems, it has been shown

that convergence is possible if N > 5t + 1. Current work indicates that for completely

connected systems, the mixed-mode model yields N > 5a + 4s + 1. The methods used

herein for synchronous systems can be extended to include mixed-mode partially connected

asynchronous systems as well. a
5.3 Non-Homogeneous Topologies

The results in Table 1 are based on the assumption that the network is regular and ho-

mogeneous. Thus, the degree and connectivity of all nodes are identical. Specifically, for

any two voting processes, i and j, the size of the voting multiset V and the number of I
non-shared processes X are identical.

If the network is not homogeneous, then one must deal with boundary conditions at the

edges of the network. Worse still is an irregular network graph, in which case nodes i £
and j may have different-sized voting multisets. Thus, the interactions between voting

algorithms in regions of differing connectivity are being investigated. I
5.4 Omission Faults j
In many systems, the most likely fault is an asymmetric ommission fault caused by a faulty

communication link. The known Approximate Agreement algorithms can not exploit this

restriction on fault behavior. We are currently studying a variant of the MSR family of

algorithms called Ommission-MSR (OMSR). Previously, one OMSR algorithm has been
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applied to clock synchronization in a system where asymmetric ommission fault , were

known to be dominant [Tha88]. In that particular case the selected OMSR algorithm was

more robust than would be possible for any MSR algorithm. Using methods similar to

those employed herein, general expressions for the robustness and convergence rates of

OMSR algorithms are being derived.

5.5 Partial Message Relay

At this point, two extreme approaches are known for achieving approximate agreement.

The conventional approach employs complete message relay to emulate a completely con-

nected network, while the approach used here employs no message relays. The complete

relay approach offers faster convergence, while the no relay approach imposes lower mes-

sage passing overhead. There is a continuum of partial relay policies lying between these

two extremes. For example, nodes in a system may relay only those messages originated by

an immediate neighbor. This approach can yield better robustness and convergence rates

than the no relay approach, while still imposing much lower overhead than the complete

relay approach.

6 Conclusions

This paper has presented a basis for limiting the overhead of achieving Approximat': Agree-

ment in large sparsely connected networks. These results make Approximate Agreement

feasible in large Fault-Tolerant Real-Time systems. They thus facilitate the confident de-

sign and verification of distributed processes such as clock synchronization and redundant

sensor management.

The general approach was to prohibit the relay of convergent voting messages so that each

processor performs convergent voting only with its immediate neighbors. The main ac-

complishments were: (1) presentation of low-overhead convergent voting algorithms which

function without message relay, (2) analysis of the convergence rates of these algorithms

using the mixed-mode fault model, (3) determination of the theoretical bounds on fault-

tolerance as a function of the topology and connectivity of the network.

The bounds for Intersection and Union Convergence shown in Table 1 apply to the entire

MSR family of algorithms. Moreover, the required algorithmic and topological parameters

are easy to determine, given a particular MSR algorithm and a particular topology. These
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results provide the foundation for on-going research on a number of related problems. 4
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unlike in commercial applications dealing withAbstract: The distributed recovery block (DRI3) environments with low fault rates. Dramatic

scheme initially formulated by the author in 1983 chanmes with past rate D ramatic

is a scheme devised for achieving task-level real- changes occurred in the past decade in the relative

time fault tolerance. Under the scheme a fault costs of hardware to software and those of VLSI

arising in execution of a real-time task does not processors to other peripheral and storage

result in the failure of the timely delivery of an components eliminated many old problems that
expetedreslt o te reeivr tskssine ahad long plagued the designers of complex real-expected result to the receiver tasks since a time computer systems while they brought in new

redundant task is acting in a different node in a research issues. To mention a few examples:

timely fashion. The DRB scheme can be used to

obtain highly reliable real-time computing (1) Little incentives for multiprogramming and
stations each capable of forward recovery from more for distributed processing:
both hardware and software faults. Several Because of the dramatically reduced
demonstrations of the performance of the scheme hardware costs, complex software schemes such
in practical application contexts such as nuclear as multiprogramming techniques for heavy
reactor control and defense command-control utilization of hardware are losing their appeals
applications were conducted. In recent years rapidly in many safety-critical real-time
efforts have been made to expand the application applications. In fact, it is now often much more
fields of the DRB scheme by extending the cost-effective to design one-task-per-processor
operational principles of and the implementation systems and such approaches make the temporal
techniques for the scheme in several directions. behavior analysis easy and they encourage high-
The formulated extensions have been discussed level optimizations such as those aimed for faster
piecemeal in different places. This paper is an guaranteed response. A node (or nodes) of a
attempt to take a comprehensive assessment of distributed computer system (DCS) dedicated to
the extension efforts made and to present some execution of an atomic real-time task is called a
newly formulated extensions and desirable computing station in this paper.
directions for future extensions. (2) Ease of using hardware redundancy:

Again due to the relative low cost of
Area: Real-Time Fault-Tolerant Systems hardware, it is now easier than before to use
Design hardware redundancy for hardware fault

tolerance, in particular, by use of active redundant
hardware components. Techniques for hardware
fault tolerance with the forward recovery effect

1. Introduction such as the TMR (triple modular redundancy)
scheme and the pair-of-comparing-pairs scheme

Many challenging real-time applications such have been extensively studied [And81, Car85,
as those encountered in defense and space Toy87, Wi85].
exploration areas deal with "dirty" environments
where electrical, electromagnetic, and mechanical (3) Persistence of software reliability problems:
disturbances cause relatively frequent failures of Achieving an ultra-high reliability of real-
computer components. Therefore, real-time fault time distributed software is still a serious
tolerance is a major requirement imposed on the challenge.
computer systems used in such applications
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These technological and economic changes 2. Basic DRB Scheme
have also dictated concomitant changes in the
most cost-effective unit of redundancy which also 2.1 Basic principles
defines boundaries for fault containment and The distributed recovery block (DRB)
replacement for repair. Consequently, the focus scheme is based on a combination of both
in development of the fault-tolerant systeni design distributed concurrent processing and recovery I
technology has been shifting from the techniques block structuring concepts to achieve fast forward
for utilizing circuit-level or function-unit-level error recovery and to treat both hardware and
redundancy through those for utilizing software faults in a uniform manner with minimal
processor-level redundancy to those for execution overhead [Kim84, Kim89a]. It is an I
computing-station-level redundancy. active redundancy scheme where multiple

The distributed recovery block (DRB) processors concurrently execute multiple versions
scheme initially formulated by the author in of a software component and then the same
[Kim84] is a scheme for exploiting redundancy at reasonableness check routine. The
the computing station level to achieve task-level reasonableness check routine in each processor,
fault tolerance. Under the scheme a fault arising together with a watch-dog timer, checks I
in execution of a real-time task does not result in reasonableness of the computational results of the

the failure of the timely delivery of an expected version executed as well as the timeliness of the
result to the receiver tasks since a redundant task execution. I
is acting in a timely fashion. The DRB scheme Recovery block consists of one or more
can be used to obtain highly reliable computing routines, called ry blocks here, designed to
stations each capable of forward recovery from coutenesame or blar reudesignd an
both hardware and software faults. Several compute the same or similar results, and an
demonstrations of the performance of the scheme acrerione which is an expression of thein practical application contexts were conducted criterion used for accepting the results of try
[in practical application contec9t, wer ] cblocks [Hor74, Ran75]. A try (i.e., execution of a
[Kim88, Kim89a, Hec89, Hec9l, Kim9l a]. try block) is thus always followed by an

In recent years efforts have been made to acceptance test execution. If an error is detected

expand the application fields of the DRB scheme during a try or as a result of an acceptance test
by extending the operational principles and the execution, then a rollback-and-retry with another
implementation techniques for the scheme in try block follows. Therefore, it is an enclosure of
several directions. The formulated extensions some recoverable activities of a process and
have been discussed piecemeal in different places. facilitates backward recovery and software fault
This paper is an attempt to take a comprehensive tolerance. *1
assessment of the extension efforts made and topresent some newly formulated extensions and Under the DRB scheme, a recovery block isSreplicated into multiple nodes forming a DRB
desirable directions for future extensions. computing station for parallel processing. In

The paper starts with an overview of the basic most cases a recovery block containing just two
DRB scheme and its application fields in Section try blocks, i.e., the primary and the alternate, is
2. In Section 3, five major extensions of the DRB designed and then assigned to two different nodes
scheme are discussed and remaining issues called the primary and wshadow n.od as depicted
related to full development of the extensions are in Figure 1. The roles of the two try blocks are
discussed. Thereafter, a simplified application of assigned differently in the two nodes. Primary
the DRB scheme to highly parallel multi- node X uses try block A as the first try block
computer networks (HPM's) in order to realize initially, whereas shadow node Y uses try block B
fault-tolerant execution of a large number of real- as the initial first try block. Therefore, until a
time tasks is discussed. The final section fault is detected, both nodes receive the same I
concludes with a discussion on four desirable input data, process the data by use of two
directions for future extension of the DRB different try blocks (i.e., block A on node X and
technology, block B on node Y), and check the results by use

of the acceptance tesL Both nodes perform all
these tasks concurrently. The time acceptance
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test (i.e., the time-out mechanism) is used to adjacent nodes is housed in one of the global
ensure timely behavior of both nodes. shared memory modules. The distributed real-

In a fault-free situation, both nodes will pass time application software in this testbed wasthe acceptanctee sith th results computed w designed to perform continuous control of thethefirst try blocks. In such a case, the primary optical sensors and the vehicle guidance andtheir firs try s. In succe, the navigation subsystem in order to track a rapidly
node notifies the shadow of its success in the mvn agt h eut eosrtdtefsaccetane tst.Theeaftr, nlythepriarymoving target. The results demonstrated the fast
acceptance test. Thereafter, only the primaryfowrrevrycpbltofheDBsem
node sends its output to the successor computing forward recovery capability of the DRB scheme

station(s). Both nodes then proceed to the next as well as the effectiveness of the implementation

task cycle. However, if the primary node fails approaches formulated.

and the shadow node passes its own acceptance Another major validation was conducted by a
test, the shadow node assumes the role of the small company located in Los Angeles, SoHaR,
primary, i.e., the nodes exchange their roles. To Inc. They extended the DRB scheme for use in
be more specific, upon its failure in passing the real-time local area PC networks for nuclear
acceptance test the primary node attempts to reactor control applications and produced a
inform the shadow node. The shadow node will product prototype [Hec89, Hec9l]. Figure 3
take over the role of the primary as soon as it depicts a high level view of such networks.
receives the notice. If the primary node crashes
completely, the shadow node will recognize the
failure of the primary upon expiration of the 2.2 DRB stations in HPM'S vs. DRB stations
preset time limit. It will then become the new in LAN'S
primary. These interactions between two nodes Since the DRB scheme is a technique for
are done asynchronously. On the other hand, if
the shadow node fails first, the primary node need realizing a "hardened" real-time computing

station and since both real-time computer systems
not be disturbed. In both cases, the failed node based on highly parallel multi-computer networks
attempts to become an operational shadow node; (HPM's) and those based on local area networks
it attempts to roll back and retry with its second (LAMs) an tho baseduonulocalnare networktry block to bring its application computation (LAN's) can also be structured in the natural form

try loc tobrin it aplictioncomutaionof interconnections of real-time computing
state including local database up-to-date. This of teronnections of ti e omputingattempt does not disturb the primary node. stations, the application fields of the DRB scheme

cover both HPM based applications and LAN
This approach has two useful characteristics: based applications. On the other hand, the

a) Recovery can be accomplished in the same differences in interconnection structures and
manner regardless of whether a node fails due to mechanisms between the HPM's and the LAN's
hardware faults or software faults; can have impacts on the approaches for
b) The recovery time is minimal since maximum implementation of DRB computing stations.
concurrency is exploited between the primary and In LAN based systems, the inter-node
the shadow nodes. communication costs are greater and the costs of

In recent years basic techniques for providing redundant communication paths are
implementation of the DRB scheme were greater. Therefore, the overhead of synchronizing
established and several demonstrations of the the primary and shadow nodes at the beginning of
performance of the scheme in practical each task cycle as well as the overhead for status
application contexts were conducted. For exchange is much greater in LAN based systems
example, several experiments were conducted at than in HPM based systems. Also, in some
the author's location and they involved HPM's, nodes may be connected via shared
application of the DRB scheme to adjacent memory modules as is the case in Figure 2. In
computing stations in real-time parallel such HPM based systems, data queues hosted on
processing multi-computer testbeds [Kim88, shared memory modules serve as communication
Kim89a, Kim91]. Figure 2 depicts one such media between DRB stations as well as between
testbed. The hardware base of the testbed partner nodes belonging to the same DRB
contains several global shared memory modules stations. Data queue management should be done
which facilitate inter-node communication. Each such that not only the partner nodes stay
data queue serving as a link among logically
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synchronized to an acceptable degree but also 3.2 Multiple recovery blocks in a DRB
they preserve input data consistency in the sense computing station
that they always pick the same data item or copies For reasons such as efflcient node utilization aof the same data item at each task cycle [Kim9l . or special characteristics of the applications, often

multiple tasks may be designed to reside on the
3. Major Established Extensions of the same node in spite of the fact that the single-task- I

DRB Scheme per-node approach is becoming justified with
increasing ease. This means that multiple

Five major established extensions of the DRB recovery blocks may reside in a DRB station
scheme are assessed in this section. [Kim91]. Actually, the following three cases are

conceivable.

3.1 DRB computing station based on (1) Multi-procedure DRB station: Each of
multiple recovery blocks in the same DRB stationcomparing processor-pairs is provided to process data items from a different

The basic DRB scheme relies on the logic source (predecessor computing station) or to
acceptance test and the time acceptance test for process a different type of data items. The I
error detection. For faster detection of hardware motivation for structuring this type of DRB
faults, the DRB scheme can be extended to stations is the node economy. The application
incorporate various established mechanisms. A software of a multi-procedure DRB station thus I
hardware fault detection scheme that has been takes the form of a "case" statement enclosing
solidly established and has met continuously multiple recovery blocks as depicted in Figure
growing acceptance due to the improved 5(a). A multl-procedure DRB station is depicted
hardware economy, is the comparing processor- in Figure 5(b).
pair scheme [Toy78, Wil85]. This scheme has (2) Multi-phase DRB station: This case arises
been incorporated into commercial industry where the mission life of a task running on a
products widely in use such as AT&T ESS and computing station consists of multiple phases and I
Stratus computers. An extension of the DRB different phases require substantially different
scheme under which each of the nodes (primary processing algorithms. The operations for each
and shadow) in a DRB station is implemented in phase can be naturally designed into a separate I
the form of a comparing processor-pair is recovery block. Although it is possible to form a
depicted in Figure 4. Such an DRB computing separate DRB station around each recovery blocK,
station should exhibit much shorter detection it is a wasteful approach since there is no
latency for most hardware faults than the ordinary parallelism among such DRB stations. Therefore,
DRB station does. Therefore, in the DRB station a multi-phase DRB station can be viewed as one
shown in Figure 4, only some rare types of running a single task structured in the form of a
hardware faults and software faults will escape "case" statement enclosing multiple recovery I
the guards set by the comparing processor-pair blocks. Figure 5(a) and 5(b) are thus applicable
mechanism and will have to be detected by the to a multi-phase DRB station also.
acceptance test with concomitant larger detection _
laencies. (3) DRB station with serially bonded recovery

blocks: This DRB station contains multiple
One thing to note here is that faster detection recovery blocks connected in a series form as

of hardware faults occurring in a node within a shown in Figure 6. Such recovery blocks are
DRB station will be useful only to the extent that called serially bonded recovery blocks. This case
the failed node can initiate sooner its attempt to naturally arises where a task is required to deliver
become a shadow node. However, another its processing results at several different stages,
important attractive feature of the comparing possibly to different destinations. This DRB
processor-pair mechanism is its high coverage in station structuring can be motivated not only for
detecting hardware faults. node economy but also for improved data

turnaround dime. To be more specific, if two I
recovery blocks closely related in the form of a
procedure-consumer relation are assigned to two g
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separate DRB stations, then message etc., are the intonniat tot htl rnccds 1) t-c pi )ý idcd
communication between recovery blocks involve. to node Z
inter-node communication. In LAN-based It node X or Y crahc,. thcn it can he
systems, such inter-node communication delaN i, ra 1. and thun the svtn can ,,

significantly larger than the intra-node tIJaed b

communication delay whi-h would be incurred iig as An ordinar to node J •il r s talonc

when both recovery blocks are assigned to one Similarly, crash of node Z wAill result in 1R

DRB station. Therefore, the single DRB station station furktif uith as an ordinary two node DR It

approach may lead to a shorter data turnaround tests but r a alive, then node Z becomes thc hey

time from the input action of the first recolery primary node and one of the tIA o failed n•des Xblock. to the output action marking the end of the and Y should become the new ,econdarv node (a
second recovery block execution. On the other
hand, the arrival rate of input data for a DRB sao o oeZadteohrtetidnd

station with serially bonded recovery blocks (a shadow for the team of Z and the other nodc)
"7lihe time-out value used by Itice third tu:•e Z

much be constrained such that the average inter-
arrival time is substantially larger than the atnd Y can be somewhat larger than that used ty

execution time for all the serially bonded Y monitoring the rimar, node X.
recovery blocks combined together. Y

h An important advantage of the approachThe above three types of extended structuring depicted in Figure 7 is the rccursive nature of the

options are believed to widen the application depic h. " F

fields of the DRB scheme considerably. It is also approach. Therefore, in an n-nodc [)RB station.
fimportat tof nte that various comnsd ablItions ao the n-th node functions as a shadow for the team
important to note that various combinations of the of the first n- I nodes. A natural consequence of
three options are feasible although detailed this recursive organi/ation is the modest inciease
implementation issues and cost-performance in the implementation complexity as the number

issues need to be studied in the future. of nodes used in a DRB station increases,

3.3 N try blocks in a DRB computing station 3.4 Adaptive DRB computing station
In some highly safety-critical applications, In some applications, environmental

the system designer may design more than two try conditions that affect fault tolerance requirements
blocks into a recovery block for the sake of imposed on computer systems change
increased reliability and comfort. Although dynacally. systems change
several approaches to strucuring a DRB station dynmical Asnificnt chan in
that uses three try blocks , conceivable, one of environmental conditions or in internal computing
the most natural approaches is to treat the third retource conditions occur, the st of fault
node as a shadow node for the team of the fir tolerance mechanisms that are effective also
two nodes. Such a station is depicted in Figure 7. changes.

Node Z in the figure will normally use try An interesting concept for extending the

block C as its primary try block and deliver is DRB scheme is the dynamic switching

results only when both X anl Y fail to produce between the recovery block scheme and the

acceptable results in time. Nodes X and Y DRB scheme in response to changes in

behave like a single functional node with respect DRB scheme requires more processing nodes
to interfacing with their shadow node Z. They than the recovery block scheme but facilitates
must share responsibilities for providing their forward recovery. Therefore, the recovery
status information to node Z at various points as block wscheme can be used in the soft-realo
well as responsibilities for urnderstanding the time mode while the DRB scheme can be
status of node Z. For example, the type of an used in the hard-real-time mode. However, if
input data item picked, the acceptance test result the number of processing nodes available
(an indication enabling node Z to determine if any falls below a certain threshold while the
one of the two nodes X and Y has passed its system is operating in the hard-real-time
acceptance test), the success of delivering the mode, then the system may switch from the
result by node X or Y to the successor stations,
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DRB scheme to the recovery block scheme repaired nodes into the operating network
for execution of selected tasks. The adaptive configuration.
version of the DRB scheme which can transit Thc integration of thc DRB scheme and a
among several modes of operation with practical centralized NCM scheme has been
concomitant changes in resource developed by SoliaR, Inc. [Hec89, Hec9 1]. The

consumption and recovery performance, is centralized NCM approach has an advantage of
called here the adaptive DRB scheme. its simplicity but can become a single point of

Let us now consider an approach to failure.
facilitating the switching between the recovery Several decentralized approaches to NCM a
block scheme and the DRB scheme. Figure 8 have also been studied in recent years (Cri88,
depicts such an approach. As shown, a node 1en89, Kop89, Kim92b]. Integrations of the ORB
executes status-1, status-2, check-1*, and status-3 scheme with such 2ecenteralizcd NCM schemes
actions only when it is operating as the primary have yet to be accomplished. N
node of a DRB station. Its mode of operation can
be determined by checking if the valid ID of the Once a node in a DRB station is functionally
shadow-partner node is in the relevant data or physically amputated off for repair, then the
structure. Similarly, a node can be either in the system resource allocator attempts to find a
mode of functioning as the shadow node of a replacement node. Such restructuring must be
DRB station supporting the primary-panner node implemented in a architecture-dependent manner 3
or in the simplex mode of executing another task since efficient synchronization and efficient status
(or recovery block) independently. When the exchange between the partner nodes in a DRB
node is ordered to be in the latter mode by the station are always desirable. Moreover, the issue
system resource allocator, the node should also be of non-disruptive rejoin, i.e., incorporating a new I
given an instruction as to which task (or recovery node into a DRB station and conditioning it into

block) to execute. an active shadow node without disturbing the
primary node much is a non-trivial one.Therefore, when the system resource allocator Therefore, implementation of a repairable ORBI

converts a node executing a recovery block in the station is a rerasludy.

simplex mode into the primary node of a DRB station is a subject awaiting much further study.

station, the following steps are involved. The U
system resource allocator first designates a node 4. A Simplified Application of the DRB
to become the shadow node of the DRB station. scheme to HPM's
The allocator activates the shadow node first by
informing the node of the ID of its primary- The applicability of the DRS scheme to the I
partner node. This activation may or may not HPM's for fault-tolerant execution of real-time
involve an abortion of an on-going task tasks was already mentioned in Section 2. The
execution. Thereafter, the allocator instructs the DRB scheme can be viewed as a software- I
primary node to supply the necessary implemented approach for achieving fault
computation state to the shadow-partner and then tolerance in HPM's without requiring special
start cooperative redundant executiun. hardware mechanisms. An important point here

is that in applying the DRB scheme to an HPM.
the scheme need not be utilized in its full

3.5 Integration of the DRB scheme and generality. To be more specific, if the system
network configuration management schemes developer is not concerned with possible software

In order to shorten fault detection latency and faults, then alternate try blocks are not necessary.
further enhance the survival period of the DCS, Oly one algorithm needs to be designed for eachI
the DRB scheme must be integrated with task,
techniques for network confiuration Moreover, it is not a requirement to design a
manageme~nt (NCM). The NCM function task-specific acceptance test. A common
generally involves detecting crashed nodes, aai ncte designed to perform spot checks Iwhether they were in busy (non-idling) states on a few selected areas of the machine hardware

before the crashes or not, and reincorporating or integrity checks for various data structures can

583



be executed at the end of each task to decide and the DRB scheme was mentioned earlier.
whether to trust the task result as an acceptable There are a broad range of real-time LAN
one or not. In such a case where a task- applications where decentralized NCM is
independent common acceptance test is used and desirable. Therefore, there are needs for
no alternate try blocks are used, forming a DRB establishing efficient decentralized approaches to
station dedicated to fault-tolerant execution of a NCM and integrating them with the DRB scheme.
task becomes a mechanical process which does
not burden the application software designer in (2) Highly adaptive DRB stations
any way. This approach can thus be viewed as a Further extension of the integration task
concrete approach to mechanical replicated in (1) is to fully establish the technique for
execution of real-time tasks in HPM's. The structuring adaptive DRB stations discussed
cooperation between the partner nodes follows in Section 3.4. In a highly adaptive DRB
the same protocol discussed in Section 2. station, at least three different modes of

An important issue in designing a HPM operation are conceivable: sequential backward

based real-time system is that of mapping reco•y m..ode (recovery block scheme),
tasks to the nodes of the HPM. When the ncurrent s rocessind su f orward recovery Mode

aforementioned mechanized formation of (DRB scheme), and seuntial forward recover
DRB stations is used, task mapping involves g in which a specially designed

assignment of each task to two nodes in application-level recovery routine is invoked

reasonable close proximity [Kim9O]. The without automatic, fully application-

distance between partner nodes must be short transparent rollback upon failure of the

because it impacts directly the efficiency of primary routine to produce an acceptable

synchronization and that of status exchange result. More importantly, the criteria used for
between the partners and thus impacts the making decisions for switching among the three
data turnaround time also. modes must be related to resource conditions

among others. They need to be established in
concrete forms and validated in future research.

5. Summary and Future Extension (3) Integration with the object-based structuring

The DRB scheme is a basic technology for concept

realizing a real-time fault-tolerant computing Object-based structuring approaches are
station which is a component of a real-time DCS meeting increasing acceptance from system
and as such can receive input data from and send designers for reasons such as modularity, etc.
computation results to other computing stations in This is the case for both soft-real-time systems
the same DCS. It has been evolved into a broadly and hard-real-time systems [Kop90]. Adaptation
applicable technology in the past nine years and of the DRB scheme to an object-based approach
has been demonstrated via several testbeds and for structuring of real-time tasks is an important
one product prototype. The extended DRB subject for future study.
schemes reviewed in Section 3 have significantly (4) Distributed conversation (DCONV) scheme
broader application fields than the basic DRB
scheme does. However, it is fair to say that the The DRB scheme is applicable to non-
DRB scheme is by and large a technique interacting segments (i.e., atomic tasks) of
specialized for safety-critical real-time application processes. To put it another way, it is
applications and not yet a fully matured a scheme to prevent a fault from crossing the
technology. The following directions are boundaries between real-time processes as much
considered to be among the most important for as possible. For protecting against faults leaking
bringing the DRB technology to a more mature through the guards established by the DRB
(more widely and easily practicable) form. scheme, supplementary schemes are needed. A

promising case of a supplementary scheme is the
(1) Integration of the DRB scheme and distributed conversation (DCONV) scheme
decentralized NCM schemes [Kim89b] which is essentially a combination of

The interesting development by SoHaR, Inc the conversation structuring scheme [Ran75] and
on an integration of a centralized NCM scheme the approach of concurrent execution of
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redundant software components which was Real-Time Distributed Systems - An Overview",
exploited in the DRB scheme. In a sense, the Proc. 1989 Workshop on Operating Systems for
DCONV scheme can be viewed as an approach to Mission-Critical Computing, ACM Press, 1991. £
hardening a group of interacting computing I Kim84J Kim, K.H., "Distributed Execution of
stations. The scheme is capable of achieving Recovery Blocks: an Approach to Uniform
forward recovery when a part or all of a group of Treatment of Hardware and Software Faults",
computing stations fail. The research in this Proc. 4th Int'l Conf. on Distributed Computing
scheme is however in its early stage. System, May 1984, pp.5 26 -53 2 .
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Abstract

The single fault-type models employed in designing dependable systems usually provide ei-
ther overly-optimistic or overly-pessimistic assessments of fault coverage or reliability. The
mixed fault-type Hybrid Fault Model (HFM) permits more realistic algorithm design and as-
sociated system modeling. The HFM classifies faults in terms of the effects of these faults
on system operations. The set of all faults is partitioned into three disjoint categories: non-
malicious faults, malicious symmetric faults, and malicious asymmetric faults. Then, the type
of algorithm required to detect or mask the subset of faults that is assumed to occur is indicated
as a function of the fault type and a closed form expression for system reliability is provided.
Reliability estimates for the hybrid model are then compared to those for existing models, and
the impact of both models on system design decisions is assessed.

1 Introduction

The fault models used in designing dependable distributed systems typically make simplifying
assumptions about the natures of faults' in the system. Often, the fault tolerance algorithms
employed by a system treat all faults identically, ignoring the effects of any fault types the algorithm
is not designed to distinguish or to tolerate. Such overly-optimistic single fault-type models assume
a fixed number of benign permanent faults and perfect fault coverage. Or, the system model employs
complex protocols that assume all faults to be pernicious, even though only a small portion of the
faults may actually require such protection. By distinguishing different fault types and considering
varying probabilities of occurrence of each fault type, we can develop more realistic system models
to design algorithms capable of handing the various fault types.

We have previously defined the HFM and its impact on the reliability modeling of ultra-reliable
systems [1, 2, 3]. In this paper, we examine the dependability and fault resiliency of several
distributed system paradigms under the HFM, using the classical single-fault models as a basis for
comparison. Under the HFM, the set of all faults is partitioned into three disjoint classes based
on fault effects: non-malicious, malicious symmetric, and malicious asymmetric. Then, the type
of algorithm required to detect or mask the subset of faults that is assumed to occur is indicated

"Supported in part by ONR Contract # N00014-91-C-0014
'A fault is the identified or hypothesized cause of an error. An error is the manifestation of a fault, an undesired

state either at the boundary or at an internal point in the system or process. A failure is the inability of the system
or component to provide the specified service caused by an error.
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as a function of the fault type. This matching of fault type to algorithm is important in ensuring I
adequate, yet cost effective, system fault coverage. If the fault tolerance techniques implemented
do not support segregation and handling of mixed faults, then the hybrid fault model reverts to
the overly optimistic or pessimistic single fault-type models, with no improvement.

After providing the motivation for our current work, we define the hybrid fault taxonomy on
which the HFM is based. Next, the classical single-type fault models and their associated reliability

expressions are presented in the context of our hybrid taxonomy. After an overview of the HFM and
the associated reliability expressions, we define our dependable system framework. We next define
several system characteristics, compare systems under both single-fault and hybrid fault models,
and provide fault tolerance strategies appropriate to a variety of applications. After applying both
fault models to example system paradigms, we conclude by summarizing our results and discussing
future research plans. I

2 Motivation 3
Several taxonomies have been proposed that provide the fault characteristics assumed by system
fault and reliability models [4, 5, 6]. Characteristics such as duration (permanent, transient, inter-

mittent); nature (hardware, software); behavior (arbitrary, restricted); and count (single, multiple) £
have long been used to model the assumed fault effects in computing or estimating system relia-
bility [4, 7, 81. With the exception of [9, 10, 11], the models also invariably focus on a single fault
type. If the possibility of arbitrarily malicious or Byzantine faults 112J is considered, many fault I
tolerance algorithms and the resulting reliability estimates treat all faults as potentially Byzan-
tine. Toleration of such faults requires complex, communication-intensive protocols [12, 13, 14, 15],

designed to restrict the malice of faults that can be introduced into the communication process. I
Thus, the arbitrarily malicious behavior of faulty nodes is prevented from disrupting the operation
of non-faulty ones. Other fault tolerance strategies ignore fault types assumed to have low oc-

currence probabilities, such as Byzantine, and then adjust the reliability estimates using coverage 1
factors [4, 7].

In defining the HFM, we assume a fully connected system consisting of nodes which communicate

using synchronous message passing, with an upper bound on the time required for a node to generate I
and send a message. Individual nodes make decisions and compute values based on information
received in mebzages from other nodes. The status of a node, faulty or good, is discerned by other

nodes through the contents of messages originating from the target node, or through the lack of I
an expected message from that node. As in [9] and [16], a non-faulty node can always identify the
sender of a message it receives and can detect the absence of an expected message.

3 The Hybrid Fault Taxonomy

The hybrid fault taxonomy, based on our work in [9], [111], and on the following definitions, classifies I
faults according to the errors they cause and the techniques needed to tolerate those errors. 2

The scope of a fault refers to the portion of the system affected by that fault, also called the

fault extent. A symmetric fault generates errors that are manifested identically throughout the

2Although we use a different definition of fault malice, these fault classes are equivalent to the classes of the same
name in [9]. 1
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fault scope. An asymmetric fault generates errors that are manifested differently throughout the
fault scope. Asymmetric faults are potentially more difficult to tolerate than symmetric faults.

Active redundancy techniques attempt to achieve fault-tolerance through fault-detection, alone
or in conjunction with location and recovery. Since we are dealing with static redundancy manage-

ment, no location or recovery techniques are addressed. Passive redundancy techniques use fault
masking to hide the occurrences of faults and to eliminate the effects of faults, thus avoiding errors.

For further details, see [4]. Non-iterative passive redundancy techniques require a single round of
message exchange. Iterative fault masking techniques include procedures such as interactive con-
vergence and interactive consistency, requiring additional rounds or iterations of message exchange
among participants [13, 14, 16]. Fault-tolerant voting techniques, such as majority and median, are
non-iterative passive redundancy primitives on which iterative passive redundancy techniques are

often based.
Non-malicious faults can and will be detected3 in a non-faulty node by the active redundancy

techniques implemented in that node. Malicious faults are those faults that cannot be detected
by the implemented active redundancy techniques, but require masking using passive redundancy

techniques.
Combining the attributes of fault malice and symmetry produces the four mutually exclusive -nd

collectively exhaustive fault sets: non-malicious symmetric faults (Bs), non-malicious asymmetric
faults (BA), malicious symmetric faults (S), and malicious asymmetric faults (A). The worst-case

(most severe 4 or most difficult to detect or tolerate) faults are those in A, corresponding to the
classic Byzantine fault where a faulty node supplies at least two different, correctly framed, values
to different nodes. Faults in S are less severe than the faults in A, but are more severe than
faults in BA U B5. Faults in B3 and BA are comparable in severity, including benign faults, -rash
faults, and the subset of Byzantine faults that can be detected using active redundancy techniques,
such as framin, errors or missing messages. While the hybrid fault model, presented in §5, does
not partition non-malicious faults into asymmetric and symmetric subsets, the single fault effects
assumed in the classical models described below require this distinction.

4 Classical Fault Models and Reliability

Many systems fail to state their fault assumptions explicitly. Instead, they assume perfect fault
coverage, even though the fault tolerance techniques they employ, which implicitly define an as-
sumed fault model, may not be resilient to all fault types. A system, using only active redundancy
techniques is capable of detecting non-malicious or benign faults from set (B = Bs U B3A). However,
if an (uncovered) malicious fault from set (A U S) occurs, system failure is likely to occur. When

only non-iterative passive redundancy techni..'tes, such as majority or fault-tolerant midpoint votes,
are implemented, symmetric faults from the _et (S = Bs U S) are masked, but the occurrence of
asymmetric faults from set (A =B 4A U A) can cause the system to fail. The use of interactive
consistency and interactive convergence algorithms ensures all fault types are covered, since such
algorithms mask arbitrary faults.

The assumed system dependability requirement is the ability to compute a correct result in the
presence of faults, and we assume static redundancy management. Thus, combinatorial formulas

'By definition, a fault that is undetected by the active redundancy techniques implemented in a non-faulty node
is malicious.

4Severity is subjective, relative to the context of the system model.
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are sufficient to provido, reliability estinates. I tI, - it a t ,ode rIt l iabilr t I ti4 I . tv ,, . -! .I

no assumptions are made about node failure d(ist ribut ifns. li'e reliabifity ia I'li, ,i1 ,,f In ,8 1
minimum number of good nodes required in a set of N iode's ti Iniailt a ' s 1trn ;nq)- r&,tI . i :.A

R, q Nv(t) is given by

and in is a function of the covered fatlt set 7 .

Based on this discussion, we next define the classical fault scenarios (''t. (' -.;;Id (' A he.re, tli.

subscript is indicative of the faults covered bIv the model.'

(v: Using active redundancy algorithms, A minimurn of ?ii nodes is needed toi,,,evr Jt, fauhk 8:i

B, where il -- f1 - 1. System reliability is given by expression (I wit v.It in 1 I

Cs: Using non-iterative passive redundancy algorithbins, a minininium of izi nodes is tved,ed t,, *
fIs faults in S, where rs ý- 2 f , 1, lieliabilitv is given by expression (-1 v. uth r72 N, 3

2- Ji

CA: I'sing iterative passive redundanry algorithmns, a mi ni mum of TIA nwildes Pe rwedied 4to )7.;i,

fA arbitrary faults, where T.A 3fA 'I firreliability is ' iwei bv ex

1)3'"A -, ,s -- 5':• 2,3

The impact of the classical scenariig on OTsI design is addres;vd follo,,win the defin , r' ,u I
1hlev hybrid fault model.

5 The Hybrid Fault Model

The hybrid fault model comprises three scenarios based on the worst case faults rovered ii ,;v•h
scenario. Sets A and S are as defined in §3, while the set of non malicious faults is given 11' I
B = 5A4 U B,5. By definition, the sets B, S, and A are disjoint-. Since experimental evid,"nce
suggests that faults in B are the mnot cornmon, with faults in S less commn thanm t fhfse rin P. arid
faults in A the least common of all, the fault assumptions made in a given system can hie ised t, I
evaluate the impact ,j"' implementing the different IIFM scenarios presented bel<ow'

5.1 Hybrid Fault Scenarios

The key to the hvi,,ir. fault remodel is to associate the proper hybrid algorithm r ith th,- assmeid

system or node fault set. The notation tl is used to indicate tha t le scenari, assumes tha!t lhe II
worst case faults :,;e in s-et X, where X r {f8,SA}

Iff: Faults in TB --- B are covered. Hybrid active redundancy algorithms and at least n nodes 3
are required to tolerate f 5 non-malicious faults, where nf :f8 (rf i (7 . ''he parameter 7r

is a fixed index, dependent upon the desired fault coverage, where (I . 7r) is the rminitmnun

number of nodes required for the system to remain operational.

"]'lie itibi¶ pts D, S, and A., ifrrring to benmgrII Sytn?)TICtjC, atkd asyinirrn tr fault% shosidi i ii-I Ir 4.nfiuld- 101
the vtts 13, S, and A of the hybrid fault taxn,)'inv Although the qct B iq equivnIl,'i-i tiI h," et P V• , ',

drfined in 13 A / A, S f -;. and %etq IB, S, and A aire not disjoint I
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i1s: Faults in 7'.5 T BUS are covered using hybrid nton iterative passive redundancy algorithms.
At least its (fB + Is) -+- (7-s 4 1) processes are needed to tolerate (Th t fs) faults, whvere
S,,,.. t and fs < Sm<,. If operation in the presence of only one non-faulty node is
possible, then rs :3 Sm.. Otherwise, 'rs > Sn,,, 1 if at least (-r" 4 1) good nodes arte required

HA: The fault set is .EA ES. S IJfUA; so, all possible faults are covered. Failure of the algorithm
to tolerate any fault corresponds to a failure of the node running the algorithm. A miltinlur
of nA = (2 fA + 2fs 4 fjB 4 TA 4 1) nodes is sufficient to tolerate (fA ; 13 4 ]'5) faults. Th,'
maximum number of faults in A that can be tolerated is Am.. ih A !A I

3 ; With fA 1' A,.L,
TA > .Am.x, and at least (rA +- 1) good nodes assumed to be necessary for the system to remain
operational. If a hybrid interactive consistency algorithm with r rounds of rebroadcast is used,
then the further restriction of IA < r is also necessary.

The hybrid fault tolerance algorithms required by the HFM first apply an active redundancy
technique to each message or value received by a node to discern any non-malicious faults, using,
for example sanity checks, formatting checks, and error detection and/or correction codes. If a
non-malicious fault is detected, such as a framing, parity, or encoding fault, a missing nessage, or
a range violation, then a default error or status value is adopted as the value received by the node
in the message. We can also assume perfect detection of non-malicious faults because any fault not
detected by the active redundancy techniques implemented in the node is malicious by definition.

Next, passive redundancy techniques appropriate to the application are applied to the remaining
values received by good nodes. We modify existing passive redundancY techniques to ignore or
exclude the default error or status value from any calculations or comparisons. In the absence of
non-malicious faults, no elements are excluded. Htybrid voting functions are derived in 1l, 3i from
the median, majority, and t-fault-tolerant mean and midpoint 1141 functions used in non-iterative
passive redundancy algorithms. A hybrid interactive consistency algorithm is presented in 191. It
should be noted that the exclusion of error values and the abilities of different nodes to receive
different numbers of error values may resuii4 in a decrease in the number of values presented to
the aforementioned fault-tolerant voting functions. Thus, the degree of fault tolerance of hybrid
passive redundancy algorithms may need to be adjusted dynamically, as shown in 131 for a hybrid

interactive convergence algorithm.

5.2 HFM Scenario Reliability

Since the assumed system dependability requirement is the ability to compute a correct result in
the presence of faults, and static redundancy management is assumed, combinatorial formulas are

sufficient to provide reliability estimates. The expressions for reliability under the ItFM are inure
complex than those for the classical fault scenarios, as they are based upon the probabilities of
occurrence of mixed fault types. The combinatorial formulas stated below are derived in I1, ll-

Again, identical node reliability, R(t), is assumed, with no assumptions regarding the distribution
of node failures.

Reliability under the three ItFM scenarios can be estimated by considering a system's oper-

ational states under combinations of mixed faults. The conditional probabilities of occurrenre of
type A, S and B faults, given that a fault has occurred, are given by ILA, 11,5 and PB, where

PA ý 1. 4 y13 = 1. Typically, we also have pl > > I. > > PtA.
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Scenario HA Reliability By definition, the number of nodes, N, satisfies £
N > 2fA f- 2fs + Jo i TA + L3

The system reliability is then computed b, summing over all possible operational states according
to HA as follows- 1

B S A LI( ( - 1)(V a ) b#a0 4a ) b * a I
b= 0,1= 0 d=O b • j a b 7. t A a a i

where B N -- rA 1, S J, and A min{rA, t i I
For each operating state, the triple (a, s, b), corresponds to the triple (fA, fs, fJo), indicating the

number of each type of fault occurring in that state. By varying the value of rA, this model covers
both interactive convergence and interactive consistency algorithms. Equation (1) is equivalent to
the expression given in 111] with rA =: r under the assumption of a hybrid interactive consistency
algorithm.

Scenario HS Reliability By the definition of Hs, N > fs + fJ + -rs i t. If perfect fault
coverage is assumed, the conditional probability of an asymmetric fault is taken to be zero, and we I
have p, +ptB = 1. However, by assuming that ps and pa do not sum to one, i.e., I --- (ySp 4 p1) - '1,5

for -Ys > 0, the probability of failure due to an uncovered fault can be included in the reliability N
computation. However, since the probability of system failure in the presence of a sinrgle fault in A I
is unity, no operating state can sustain an asymmetric malicious fault. So, regardless of the value
of PA, we again sum over all the operating states to yield Rv,, given by 3

S(N) (N;- b).,,,,(1- R(())b+*(R(t))N-b-b!ýO 0=0

where B = N - r• - 1 and S = min(rs, N - -rs - b 1).

Scenario HB R--,ability We have N > fs + rB + 1, as defined in §5. If perfect coverage I
is assumed, then ptL = 1, with ps = ILA = 0; otherwise, I - /tl = 7a for some 7tB > 0, and
the probability of correct operation in the presence of either a malicious symmetric or malicious

asymmetric fault is zero. Thus, reliability under this scenario is given by

R,,v. = E ' (N ,4.(1-- n(t))b'a(t)tc -b

where B = N - T-- 1. 
I

6 System Fault Tolerance Strategies

As stated previously, we assume static redundancy management, where faulty nodes remain in the
system; neither fault isolation nor reconfiguration is considered. Node failures are assumed to be
exponentially distributed with failure rate A =- 10-4 over a one hour mission.
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4~i 7 -A~~ I 5 E 6 1 8

CB _ _345 6

c 114 1f 1 2 { 2 3_ 3

CA 2________ 2 2

HS . (JB,fsIA) (•2,0,0) (_ 3,0,0) (4,0,0) (<5,0,0) (< 6,0,0) (< 7,0,0)

(0,1,0) (1,1,0) (<2,1,0) (< 3,1,0) (1 4,1,0) (< 5, 1,0)
(0,1,0) (0, < 2,0) (1,2,0) (2,2,0) (< 3,2,0)

(1,2,0) (1,3,0)
____ ______ ________ _______(o, < 3,0o)

HA (f1, fs,JA) (< 2,0,0) (< 3,0,0) (< 4,0,0) (< 4,0,0) (< 5,0,0)
(0,0,1) (1,1,0) (<2,1,0) (K 2,1, 0)(K 3,1,0)
(0,1,0) (1,0,1) (•2,0,1) (< 2,0,1) (< 3,0,1)

(G,1,0) (0,< 2,0) (0,< 2,0) (1,2,0)

(0,0,1) (0,1,1) (0,1,1) (1, 1, 1)
(0, < 2, 0)
(o,t, I)

S __ (0o, 0 2)

Table 1: Classical and HFM Covered Faults

The main dependability requirement is that all non-faulty nodes compute "correct" values in
the presence of faults, with the definition of correctness specified for individual scenarios. For
simplicity, each node computes a data value, sends it to all other nodes, and decides on a correct
value. All good nodes are expected to arrive at the same value.

Specific definitions for computing a correct final value determine the scenario that, applies to
the system model. In scenarios CB and JIB, a node assumes its own value is correct, and compares
this value to the values received from all other nodes, thus detecting the presence of fNulty nodes in

the system. In scenarios Cc and HS, a node applies a fault masking algorithm to the set containing
its personal value and the values received from all other nodes. The node adopts this voted value as
the correct value. In scenarios CA and HA, each node executes an interactive consistency algorithm
to achieve agreement among the non-faulty nodes upon the values sent by every node. A majority
algorithm is then applied to the consistent value set to arrive at a final correct value.

We next present several design strategies based on this simple framework to fnrther illustrate
the implications of the I1FM. These strategies are derived from the techniques described above for

computing a correct final value under each scenario. The fault detection and masking algorithms
used in the scenario are further specified to enhance the system tolerance to mixed faults. Several
different assumptions about the types of faults and their relative probabilities are made. The
characteristics of systems defined under th, various strategies are then coml-ired and contrasted
by applying them to several examples in §7.

6.1 Strategy 1: Classical Single Fault Type Models

Our baseline strategy employs the basic single fault type models defined in §4. Table 2 presents
the characteristics associated with each of the scenarios, with the number of faults tolerated given
in Table I and the reliability given in Table 6 for all three scenarios for several values ( f N. The
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Scen§ario ___1___ CS _CA_

Fault Set B3 U S BA u A
FT Tech Compare Masking Masking3
Active Y None None
Passive None Majority IC

Fault Prob I =B IAS=1 /AA 1

Table 2: Strategy 1--Classical Models

main difficulties in using this strategy are the assumption of perfect fault coverage and the use of
a single type of fault tolerance algorithm, implementing either passive or active redundancy.

We begin by examining C3, as shown in Table 6 for up to 8 nodes. The reliability estimates ob .

tained under this assumption are overly optimistic. Under this model perfect reliability is achieved
for five or more nodes, even though, realistically, it may be impossible guarantee perfect fault coyv
erage. Furthermore, computed values are merely compared and a detected difference is flagged. I
This model neglects the occurrence of malicious faults, and cannot guarantee that all good nodes
will be able to recognize a correct value.

If scenario Cs applies, symmetric faults can be masked, and each good node will compute a I
correct value as long as the fault assumptions (type and number) are not violated. However, the
implementation of a masking algorithm without dedicating additional resources to fault detection
removes the system's ability to detect faults. Thus, if an uncovered fault occurs, the good nodes I
could potentially compute incorrect values with no indication of any fault. Again, the reliability
estimates for CS, shown in Table 6, are overly optimistic.

Unlike previous scenario estimates, the reliability estimate under scenario CA is overly pes- I
simistic, as it assumes that all faults are arbitrarily malicious. Perfect coverage to the number of
faults shown in Table 1 permits the system to tolerate all types of faults. The implementation of
interactive consistency or convergence fault masking algorithms permits the correct answer to be I
computed on all good nodes. However, faulty nodes are not detected. The effects of this model on
system reliability are shown in Table 6. 1
6.2 Strategy 2-HFM with Perfect Coverage

We begin our discussion of the HFM under the assumption of perfect coverage. The specific 3
characteristics of each scenario under the HFM are given in Table 3. Unlike the previous strategy,
mixed fault tolerance techniques are employed, permitting detection of non-malicious faults in all
scenarios. Masking of malicious faults in scenarios HS and HA ensures correct computations under
that fault assumption. Framing checks are used to detect garbled messages, and then hybrid passive
redundancy techniques are used to mask the remaining faults. The nominal values of 7 are assumed,
with rB = 0. rs = Sm,,, and r. Am,= . The fault combinations that can occur for scenarios 11A

and Hs appear i-t Table 1. Unreliability estimates under these scenarios under Strategy 2 are
given in Table 6. The unreliability and faults covered for HB are identical to those given for CB.
Although the possibility of uncovered faults is neglect, in scenario HS, the reliability obtained I
still exceeds that of the classical fault models, as can be seen by comparing the unreliabilities for

the two scenarios in Tables 6. If scenario HA applies, then the reliability estimates are improved
by at least a factor of 10, as can be seen by examining the entries corresponding to 11A in able 6
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Scenario ______ 711s tt7 'A

Fault Set B BUS B S uA
FT Tech Hybrid Detection Hybrid Majority Hybrid IC

Active Framing, Compare Framing Framing

Passive None Hyb Majority Hyb IC

(Af, PS, AA)_ (1,0,0) (.98,.02,0) (.98, .01, .01)

Table 3: Strategy 2-HFM with Perfect Coverage

Scenario HB H A .. A

Fault Set 3B BuS BuSuA
FT Tech Hybrid Detection Hybrid Majority Hybrid IC

Active Framing, Compare Framing Framing
Passive None Hyb Majority .. yb IC

(11B , PS, FA) (.98, (.02)) (.98, .015, (.005)) (.98, .015, 00)5)

Table 4: Strategy 3-HFM with More Practical Fault Coverage

and CA in Table 6. The fault combinations given in Table 1 for the two scenarios are also valid for
all strategies.

6.3 Strategy 3: HFM with More Practical Fault Coverage

As with the classical models in Strategy 1, the HFM scenarios in the previous strategy all assume
perfect fault coverage. The reliability estimates reflect this assumption, with scenarios tt5 and fHB
achieving near-perfect reliability. Suppose the conditional probability non-malicious, symmetric
malicious, and asymmetric malicious faults are assumed to be pf = .98, ps = .015, AA = .005), as

in Table 4. For scenarios H1, the notation (.98, (.02)), used in Table 4, means that the probability of
a covered fault is pB = .98, with a probability of .02 that an uncovered fault will occur. The entries
under Strategy 3 in Table 6 contain the unreliability estimates for both HR and Hs, recomputed

to account for the potential of uncovered faults which cause the system to fail, as described in §5.2.
While these estimates may actually be somewhat pessimistic, they provide a lower bound on system
reliability to complement the upper bound computed in the previous strategy. Since HA covers all
fault types, the corresponding unreliability estimates are identical to those under Strategy 2.

6.4 Strategy 4: HFM with More Fault Detection

A novel feature of the HFM is the ability to transform malicious faults into non-malicious ones by
including more fault detection mechanism in the system. By definition, malicious faults are those
whose effects can not be detected by the fault tolerance mechanisms implemented in the system.
So, the inclusion of additional detection methods should decrease the conditional probability that

a fault is malicious by increasing the types of faults that can be detected. The dependence of
fault type on system factors is also a feature of the commonly used duration taxonomy, in that the
distinction among permanent, intermittent and transient faults must be made relative the to the
time granularity of the specific application and mission time. However, it is easier to add additional

fault protection than to change the application or mission time parameters. Since the malice of
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Scenario HS §o717 If 1A I
Fault Set B. Bus . us u A
FT Tech Hybrid Detection lHybrid Majority Hybrid IC

Active Framing, ECC Framing, ECC Framing, ECG
Sanity, Compare Sanity, Compare Sanity, Compare

Passive None Hyb Majority Hyb IC

(11B, AS, ILA) (.99, (.01)) (a)(.99, .01, 0) (.99, .008, .002)
(b)(.99, .008, (.002)) I

Table 5: Strategy 4-Hybrid Fault Model with More Active Redundancy

F - 2 3 4 6 I 6 T 7 8 J
Strategy I CB 1.0E-8 1.OE-12 9.7E-17 0 0 0 0

Cs 3.OE-8 6.OE-8 1.0 1 2.0E-11 3.5E- 15 7.0•E- 15
CA . 6.OE-8 1.0E-7 1.5E-7 f3.5E11 ..5.6- I

Strategy 2 Hs .......... 1.2E-9 2.E-4 1 12E-14_ .7E-16 E 1.4E-i7 0
SJ 2.E-9 4.1E-11 4.2E-14* 4.6E-16

Strategy 3 IIB 4.0E-6 6.OE-6 8.OE--6 1.0E-5 1.2E-5 1.4E-5 1.6E- 5
HS 1.5E -6 2.OE-6 2.5E- 1j 2.OE-6 3.OE-6 3.5E-6

HA 2.4E-9 4.E1 3.8E-12 4.2E-14 4.6E- 16

Strategy 4 HB 2.OE-6 3.OE-6 4.OE-6 5.0E-6 6.0E-6 7.OE-6 9.OE -6
HS (a) 6.OE-10 6.IE-12 3.OE-15 0 0 0

fts(b) 6.OE-7 8.OE-7 1.0E-6 1.2E-6 1.4E-6 1.6E- 6
HA 1.2E-9 1.OE-11 6. 1E-13 1.1E-14 2.8E-17

Table 6: Unreliability for All Strategies 3
a fault depends upon the specific fault tolerance techniques implemented, the distinction between
malicious and non-malicious faults can not be separated from the system design. 3

Thus, in this strategy, the additional active redundancy techniques employed in tile system
should cause the conditional probability of malicious faults to decrease. Instead of relying solely
on framing checks to detect faulty node behavio- in the form of garbled messages, error correction 3
and detection codes can be implemented to permit information redundancy in data transmission to
reduce the probability of an undetectably fault message. Sanity checks are employed to identify data
values, in properly framed messages, that are outside the range of acceptable values. Comparison of 3
values received from a node with the value obtained by applying passive redundancy techniques to
a set of received data values permits detection of faults that were malicious in the previous strategy.

Thus, the assumed conditional fault probabilities 11A, ps, and UB can be adjusted to reflect the
additional fault coverage, as shown in Table 5. The resulting increase in reliability is demonstrated

in Table 6 under Strategy 4, where the values for H.s are computed with the perfect fault coverage
assumption (a), and without it(b). 3

We next apply these strategies to two system design problems.

I
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7 HFM Application to System Design

As evident, from the strategies presented in the previous section, the classical single type fault sce-
narios contain few parameters that can be varied: the number of nod-s, the number of rebroadcast
rounds in the interactive consistency algor;.hm, and the number of good nodes required for system
operation. The hybrid fault scenarios ex )and the parameters, permitting improved precision in
modeling the system specified by the design requirements. The mixed fault types of the ItFM pro-
vide dynamic fault tolerance, with linearly increasing system reliability as a function of increased
system size. An additional advantage of the HFM is the use of fault segregation to justify design
decisions. For example, to enhance the Byzantine fault coverage from 1 to 2 faults, the number of
system nodes must be increased from 4 to 7. Under the Byzantine xrodel, a system 5 or 6 nodes
actually yields lower reliability than even a 4 node system (See Table 6, Scenario CA). However, as
we showed in (1] and [11], both the reliability and the system resilience to faults other than Byzan-
tine increase when the HFM is used, justifying the use of additional resources without increasing
algorithm complexity (See Table 6, Strategy 2, Scenario HA).

To demonstrate the use of the HFM in making design decisions, we will examine several sets of
design requirements, demonstrating why certain strategies and scenarios are most likely to achieve
the design goals. Tradeoffs among the system cost, reliability, fault resilience, and system require-
ments are considered in defining candidate designs.

7.1 Example 1

Our first application requires a system of at most five nodes. All good nodes are required to
compute a correct value and to flag the presence of some faulty nodes. The target unreliability is
on the order of 10'. The probability of arbitrary faults is assumed to be negligible, and two faults
must be tolerated.

We first examine the scenarios under Strategy 1 (§6.1). We can immediately reject CB because
good nodes are not guaranteed to compute a correct value in the presence of symmetric faults.
While correct values will be computed in scenarios CA and Cs and a four node system satisfies the
reliability requirements, neither scenario detects the presence of even one faulty node. We therefore
reject Strategy 1, and examine the strategies under the HFM.

Using Strategy 2 (§6.2), both scenarios HS and HA satisfy the correctness and unreliability
requirements. Since hybrid algorithms are used, node faults that cause a message to fail the
framing check will be detected. Since the probability of asymmetric faults is negligible, adopting
the HIA scenario, with its interactive consistency algorithm, may not be cost effective. So, Its with
four nodes would appear to be adequate for this example, with its unreliability of 2.4E-11 from
Table 6.

However, the probability of an asymmetric fault, while negligible, is still non-zero. Thus, the
reliability comp..ted for H,5 under Strategy 2, assuming perfect fault coverage, may be overly
optimistic. The unreliability for this scenario under Strategy 3 (§6.3), with the probability of
uncovered asymmetric malicious faults assumed to be .005, is given in Table 6 as 2.0 E-6. Thus,
the reliability requirement is no longer satisfied. Furthermore, the system cannot detect potentbal
corruption of the final value by an asymmetric malicious fault.

Although many system designers would still adopt H,5 under Strategy 2, the IIFM provides
another alternative by permitting a further decrease in the probability of undetectable corruption
due to an asymmetric malicious fault. In Strategy 4 (§6.4), additional active redundancy techniques
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are implemented in the system. Messages are encoded and decoded with an ECC, sanity checks I
are applied to received data values, and the voted result is compared to all original values to detect
the presence of an otherwise undetected fault. In this way, some of the asymmetric faults that were 3
malicious under previous strategies are transformed into non-malicious faults under Strategy 4.

For example, the framing check under Strategy 3 would not have detected a value out of range
in an otherwise correctly framed message. Unless all good nodes received the same incorrect value I
from that faulty sender, the sender has committed a (malicious asymmetric) fault which could cause
the system to fail under Strategy 3. By implementing a sanity check to ensure that all values to be
voted are within the correct range, Strategy 4 can mask faults of this nature. Once the final value 3
is computed, the comparison of received values with the final value then permits a potential fault
to be flagged. As shown in Table 6, the reliability of this system under scenario Hs in Strategy 4,
without assuming perfect fault coverage, is estimated to be 8.0 E-7, which is in the desired range. U
If perfect fault is coverage assumed, the estimated reliability is 6.1 E-12.

Based on our analysis, there are several strategies which can be used in solving our example
problem, permitting other factors to be addressed in choosing the final implementation. For exam-
ple, scenario HA could also be applied if the extra round of rebroadcast could be justified for some
other reason, such as the elimination of a single point of failure. Another point of consideration
is the requirement that two faults be tolerated. While the scenario HS strategies we judged to be 5
acceptable were all capable of tolerating two faults, no four-node implementation could tolerate two
symmetric malicious faults. The ambiguity lies not in our model, but in the prob' -m specification.
A more precise definition of the types of faults to be tolerated could change the acceptable scenario 3
and strategies appreciably, as evident in the next example.

7.2 Example 2 3
We now increase our reliability requirements and more precisely specify the faults to be tolerated.
All good nodes are required to compute a correct value and to flag the presence of some faulty
nodes. The target unreliability is now on the order of 10-10. Up to eight nodes are permitted, and
a minimum of two faults, one of which is arbitrary, must be tolerated. Other system considerations
require that the weight and cost be minimized.

We first examine the classical single fault-type models of Strategy 1. The requirement that the 3
system tolerate one arbitrary fault immediately removes scenarios CB and CS from consideration.
Since the system must tolerate two faults, scenario CA requires an 8 node system, with the reliability
given in Table 6 as 5.6E-11. To permit scenario CA to detect some faults, a comparison function I
can be implemented to permit a node to detect differences between the final value and the original
value sent by each node. With this modification, scenario CA satisfies the requirements of this
example. I

However, if another strategy and scenario can be found which satisfy the same requirements with
fewer system nodes, then the need to minimize cost and weight would make that scenario a more
practical candidate. An examination of the properties of scevario HA under either Strategy 3 (§6.3) I
or Strategy 4 (§6.4), given in Tables 4, 5, and 6, shows that the six node configuration satisfies the
problem requirements. The choice of strategy could then be made based on the cost of implementing
the additional active redundancy techniques used in Strategy 4.

104 3



8 Conclusion

In this paper we have presented an overview of both the classical single fault type models and the
mixed fault type HFM. Using the hybrid fault taxonomy, we compared the fault tolerance of both
classes of models. After providing closed form reliability expressions, we examined the reliability,
fault resiliency and other system characteristics for a variety of system design strategies. We then
applied the strategies to two examples, demonstrating the impact of the hybrid fault model upon
the decision process in designing systems under a variety of constraints.

The major problem in applying this type of technique to system design or analysis is the need
to estimate node failure rates and the conditional probabilities of mixed fault types. Thus, the
comparisons provided in discussing the different system strategies should be applied according to
the relative probabilities of various fault types, as few, if any, adequate techniques or data currently
exist to provide precise estimates of the occurrences of mixed fault types. Another difficulty is
ambiguous or incomplete system requirements, which do not provide an accurate representation of
the desired system. This too represents an ongoing research problem that attempts to transcend
the limitations of natural language in specifying systems.

We are currently extending our work to address dynamic redundancy management, requiring
on-line fault detection, diagnosis, isolation, and system reconfiguratio--. Several facets of the diag-
nostic process which were not relevant under the static redundancy assumption need to be examined
carefully. The detection mechanisms assumed in many of the strategies presented above will need
to be expanded to lessen the ambiguity inherent in distributed decision making. Also, the impor-
tance of minimizing the diagnosis process bandwidth becomes more important than minimizing the
amount of information exchange required to mask malicious faults.

The examples in this paper were kept simple to prevent the difficulties encountered in designing
large, complex systems from hiding the decision processes supported by the HFM. However, many of
the fault tolerance techniques implemented in the Multicomputer Architecture for Fault Tolerance
(MAFT) system [17, 181 were chosen based on considerations similar to those we described. Our

current work includes the application of the HFM to more realistic design problems.
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Abstract

It is essential to develop a set of system views which faithfully and
completely specify complex computing systems from all important as-
pects, including such non-functional attributes as system dependabil-
ity and performance. In this paper, we describe a dependability view
which can be employed as a useful design tool to specify and ana-
lyze dependable systems. A real-time fault-tolerant operating system
design is presented as a real-life case of using the dependability view.

1 Introduction

The development of a set of fundamental system views to capture all facets of
a complex system design is essential in completely specifying such systems.
Each system view should present an important aspect of the system and a
complete set of views is needed to faithfully specify the system.

Five system views are commonly used in computer based system en-
gineering (CBSE): Informational, Functional, Behavioral, Environmental,
and Implementational [1]. The first three views are often used for system
specification and design, while the last two views provide implementation
constraints. The Informational View describes the system components and
information flow among those components. Both system partitions and ob-
ject relations are shown. The Functional View specifies the system functions
and their inputs and outputs, describing the system operations and its re-
sponse to stimuli. The Behavioral View describes different system states
and their transitions, characterizing the dynamic system behavior. Each of
these three views captures an important system aspect that is not covered
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by the other two views. Since all three views portray the same system, re- I
lations among them can be exploited to ensure that the specifications are
consistent. A mapping matrix can be used to establish the relation between
the Informational View and the Functional View. Similarly, the state tran- I
sitions in the Behavioral View can be traced in the Functional View by
executing a series of functions. The current system development technol-
ogy uses these three views, more or less independently, to capture system I
constructs. A number of computer-aided system engineering (CASE) tools
have also been built based on these views. Nevertheless, these three system
views, combined with the Environmental and Implementational views are
not adequate to fully specify the properties of complex systems designed for
distributed, real-time, and mission-critical applications.

In developing the Real-Time Executive Module (RTEM), an operating I
system kernel for real-time and fault-tolerant computing, we found that two
essential views, the system dependability and system performance (real-
time) views, should be added to the current set. In this paper, we concen-
trate on the dependability design of the RTEM system. RTEM is a complex,
software operating system kernel which controls a distributed computer plat-
form for real-time and mission-critical applications. In its original design I
document, all three available views were used to describe the system archi-
tecture, functions, and behaviors in high-level graphical diagrams. However,
the system dependability had only textual descriptions and its specifications I
were embedded in the specifications of system functions used to implement
redundancy management. Such textual descriptions are subject to different
interpretations and usually present too much detail in the conceptual design I
stage. The mixed specifications also made the system dependability analysis
less abstract and more implementation dependent. To overcome these short-
comings, a system dependability view needs to be defined independently in I
high-level system design to capture system dependability constructs.

In this paper, we discuss a method which is used in the RTEM devel-

opment to construct a graphical representation for system dependability. I
We use two symbols, Fault Containment Region (FCR) and Redundancy
Management Technique (RMT), as basic building blocks for constructing a

system dependability view. A system can be partitioned hierarchically into
multiple FCR's and each FCR contains some RMT's to define redundancy
management techniques used in its region. We suggest that FCR partition-

ing and RMT selection be based on a hybrid fault model and its associated I
redundancy management techniques [2](3]. Although the dependability view
proposed in this paper is not a formal one, it provides a framework for future 3

1
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formalization.

2 Terminology

In this section, we introduce the terminology used in describing the depend-
ability system view and the hybrid fault model. By dependability, we mean
the qualitative property of a system that permits justifiable reliance on the
services delivered[8, 61. We use the standard definition of reliability as the
conditional probability that a system is operating correctly throughout an
interval of time, given that il. was operating correctly at the beginning of
that interval. The number of faults that the system can tolerate without
becoming undependable is its resiliency.

Resource duplication or redundancy is used at the information, com-
ponent, or computation levels to ensure fault-tolerance, correct operation
in the presence of faults. Active redundancy techniques attempt to achieve
fault-tolerance through fault-detection, alone or in conjunction with loca-
tion and recovery. Passive redundancy techniques use fault masking to hide
the occurrences of faults and to eliminate the effects of faults, thus avoiding
errors. Non-iterative passive redundancy techniques require a single round
of message exch.nge. Iterative fault masking techniques, such as interactive
convergence and interactive consistency, require additional rounds or iter-
ations of message exchange among participants [5]. Fault-tolerant voting
techniques, such as majority and median, are non-iterative passive redun-
dancy techniques on which iterative passive redundancy techniques are of.en
based. Hybrid redundancy techniques combine active redundancy methods
that detect faults with passive methods that mask the remaining faults.

Redundancy management is used to administrate the implemented re-
dundancy techniques. If static redundancy management is used, faulty nodes
or components remain in the system; neither fault isolation nor reconfigura-
tion is considered. If dynamic redundancy management is employed, faulty
nodes can be isolated and repair, recovery, or reconfiguration can be at-
tempted.

Unlike previous work, we place no limitations on the duration of a fault;
transient, intermittent and permanent faults are supported. The hybrid fault
model classifies faults according to the errors they cause and the techniques
needed to tolerate those errors, based on the following definitions. The
scope of a fault refers to the portion of the system affected by that fault,
also called the fault eztent. A symmetric fault generates errors that are
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manifested identically throughout the fault scope. An asyrmmetrrc faudt I
generates errors that are manifested differently throughout the fault scope.
Asymmetric faults are potentially more severe than symmnetric faults.

Non-malicioiu faults can and will be detected in a non-faulty node by tee I
active redundancy techniques implemented in that node. Malicious faults
are those faults that cannot be detected by the implemented active redun-
dancy techniques, but require masking using passive redundancy techniques. I

Combining the attributes of malice and symmetry produces the three
mutually exclusive and collectively exhaustive fault sets that make up the
hybrid model: non-majicious faults (B), maliciou symmetric falts (S), and I
maliciou ajymmetric fa•lit (A). The worst-case, or most severe, faults in
.F are those in A. Faults in S are less severe than the faults in A, but
are more severe than faults in S. The system dependability view presented I
below assumes the hybrid fault model is used in specifying the system's fault
handling capacity.

3 System Dependability View

The system dependability view used in the RTEM development is a graphical I
notation which employs two symbols as well as their relations to describe sys-
tem dependability. The two symbols awe Fault Containment Region (FCR)
and Redundancy Management Technique (RMT). An FCR is defined as a re- I
gion beyond which a certain number and type fault cannot propagate. RMT
is the technique used to fulfill the FCR objective. A system dependability
design then can be described by using these symbols, either in a top-down I
or a bottom-up fashion.

If a top-down design method is adopted, a candidate system can be
partitioned into several FCR's with coverage for the different fault types I
of the hybrid fault model. For example, a system may require that its
data receiving subsystem to detect only non-malicious faults. Thus, this
subsystem can be treated as one FCR. On the other hand, a central control I
subsystem executing the control logic for weapon launch may have to tolerate
any type of fault including Byzantine faults {5]. This requirement defines
another FCR with much stronger fault resiliency in its region. An FCR I
usually has a territory bound by natural hardware/software components.
It also indicates its fault-tolerant capability with the number and types of

faults tolerated in its region.

I
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3 Figure 1: A simple dependability view

A system may have several top-level FCR's and each FCR can be un-
folded to show a hierarchical structure. Figure I shows a simple depend-
ability view with one layer of FCR hierarchy. The top-level FCR has three
sub-level FCR's, each of which can tolerate only non-malicious faults. In3other words, if a malicious fault exists, for nstance in FCRi, it will not
be detected/corrected and may manifest errors in the FCRI outputs to the
FCR region. If the top-level FCR is required to stop the fault propagation,
or it cannot afford errors caused by the fault in its outputs, an RMT must
be used to tolerate the fault. In figure 1, the RMT is a distributed ma-
jority voting algorithm, and the top-level FCR will be able to tolerate one
malicious symmetric fault and multiple non-malicious faults.

It is interesting to note that the RMT implementation will affect FCR
capability. For example, if the RMT in figure I is changed to the Triple
Module Redundancy (TMR) technique, a single voter is introduced into the
original FCR. It becomes a new fault containment region FCR4 as shown in
figure 2. That changes the overall FCR resiliency. The FCR can no longer
constrain the propagation of a malicious fault if it is originated in FCR4
and linked to FCR outputs. To preserve the original FCR dependability,
FCR4 itself must be able to cover at least one malicious symmetric fault as
shown in figure 3. The FCR4 then should have at least three voters and
multiple links which perform cross voting. Please note that an FCR may
change its dependability while still maintain its reliability. For instance,
although the FCR in figure 2 changes its dependability, it may still be able
to maintain its reliability if a highly reliable component is used for the single
voter. While expressing system dependability explicitly, the DependabilityI

I
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Figure 2: Dependability view with TMR I
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Figure 3: Multiple voters in a separate FCR 3
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I- View also provides a mean for system reliability analysis 121.

3 4 Real-Time Executive Module

In this section, we present a real-life system design case to show how the l)e-3 pendability View can be used to enhance design capability for fault-tolerant
computer systems. RTEM is a software operating system kernel designed to
control a distributed computing platform for real-time and mission-critical3 applications. The goal of our research is to develop a set of system executive
functions which are portable to microprocessor based computing systems.
These executive functions can be loaded to each processor in a distributed3 computing environment and perform both time management and redun-
dancy management for a single node, as well as for the complex system.
In the first phase of research, we are developing a concept-proof prototype
which will be used as a flexible system model to test and verify design
concepts for the Multicomputer Architecture for Fault-Tolerance (MAFT)
[9]. In this paper, we concentrate on the discussion of system dependability
design.

The dependability requirement for the RTEM prototype L to design a
system that is able to tolerate a single fault of any type: non-malicious,
malicious symmetric, or malicious asymmetric. In order to cover a sin-
gle malicious asymmetric fault, the prototype needs a minimum four node
configuration and a fully connected communication network to perform the
Interactive Consistency Algorithm (4,5]. Figure 4 contaias the Informa-
zional View of the system, which shows object partitioning and the infor-
mation flow among components. Figure 5 illustrates the Functional View,3 in which seven main functions define the system operation. These functions

U
U
3

Figure 4: RTEM informational view
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Figure 5: RTEM functional view

are loaded into each node in the distributed platform, and provide the core
processes of time and redundancy management. If a faulty node is detected,
dynamic redundancy nianagement is required to reconfigure the system.

The system has three main operation states: cold-start, steady-state,
and reconfiguration. The diagram of operation state transition is shown in
figure 6. When system is powered up, it is in the cold-start state. During
this period, all nodes try to synchronize with each other to form a commo-,
operating set. The Interactive Consistency Algorithm is computed so that
all nodes can have a consistent common view about their membership in the

cold start

opeaionI

nECONF DETECITUCOMPLETED reconfiguration FAULTY NODES

Figure 6: RTEM behavioral view 3
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U- operating set. Once the operating set is formed, it triggers the transition
from cold-start to the steady-state operation which is the main operation
state for the RTEM system. The transition from steady-state to reconfigu-
ration mode is triggered if a faulty node is detected by the system.

Constructing a dependability view is an attempt to establish a common
language as a design aid for system engineers to capture, describe, and an-
alyze fault-tolerant systems. The RTEM dependability view defines fault
containment regions based on system partitioning and a fault containment
architecture based on the system hierarchy. The dependability view also
states the redundancy management techniques that are used, and how they
are applied to tolerate faults in a particular region. The graphical repre-
sentation provides a tool for system engineers to use common symbols and
syntax to discuss system dependability design.

_An FCR usually has a territory bound by natural hardware/software
components. The entire RTEM system can be considered as one FCR which

has the capability of tolerating any type of a single fault. In the FCR,
there are several sub-level FCR's which provide necessary hardware/software
redundancy to realize the fault-tolerant capability of the top-level FCR. The
partitioning is based on hardware components and each processor can be
naturally defined as a fault containment region. Since all four nodes are
fully connected, the communication network can also be divided to four

broadcasting channels and each of them can be included into its processor
based fault containment region. Therefore, no separated sub-level FCR is
used to represent the network component. In the following discussion, we
will use FCR to refer the system level fault containment region. Component
level fault containment regions will be referred as FCRi for an individual
node or FCRs for multiple nodes.I After partitioning, we need to determine the fault-tolerant capability for
each FCRi. There are a number of options, and the design choice must
be made to meet dependability requirements for both components and the
system. In RTEM, a node FCRi is not required to contain malicious faults.
In other words, if a malicious fault is originated in an FCRj, it may appear in
FCRi outputs. Nevertheless, it will not propagate through the system FCR
region because of the redundancy techniques used among FCRs. Under
this requirement, each FCRI has a single processor executing only active
redundancy techniques for fault detection. Each FCRi includes as many as
25 different error detection mechanisms; so, a wide ranges of faults can be
detected. A detected fault is then isolated and masked in the FCR region.

By the definition of fault containment region, FCRi errors can be msoni-

1
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Figure 7: RTEM dependability view

tored only through message exchanges with other FCRs. A message can be
a system state vector, task scheduling vector, application data values, etc.i
There are a number of messages flowing around the system. If a node be- D
comes faulty, it may generate erroneous messages and broadcast them as the
output of its FCRi. In order to fulfill the dependability objective of the sys-
temn FOR, appropriate RMT, redundancy management techniques, shouldm
be applied to detect and correct those erroneous messages. The faulty node
should be properly identified and then gracefully excluded from the system.

After defining FCRs and RMTs, we can construct the dependability view 3
for the R.TEM system as illustrated in figure 7. The view then can be used
to discuss system dependability design. It is obvious that the key issue is to

select adequate redundancy techniques for the system to tolerate a malicious I
asymmetric fault. If the system can cover a malicious asymmetric fault, it
can cover a single fault of other types too. As shown in the dependability•
view, three different RMTs are used in RTEM. R.MT computes the Inter- I
active Consistency Algorithm for certain system messages so that all nodes
will have a consistent common view for five important system data struc-

tu~res. They are: system operating set, task complete/start vector, system I
state vector, error vector, and penalty count for individual node. If a ma-
licious asymmetric fault causes errors in these messages, it will be properly 3

I
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I masked by all good nodes in exactly the same way. Maintaining consistency
is a necessary condition to achieve the RTEM design goal: a good node
will never be commonly accused by majority nodes and a bad node will be
commonly identified by all good nodes.

In the RTEM dependability view, system synchronization and applica-
tion data are the only two messages which are not covered by RMT1 tech-
nique. Instead, they use majority voting algorithms to protect data integrity.
Since a simple majority voting cannot detect or mask malicious asymmetric
faults, the system may not be able to maintain the desired resiliency if such
faults manifest errors in these two messages. Computing the Interactive
Consistency check for all messages would be, of course, a safe design choice.
However, the Interactive Consistency Algorithm is very expensive in terms
of using network bandwidth. To cover a single asymmetric fault, the system
needs two rounds of broadcasting and voting [5]. The first round broadcasts
N copies of a message, and the second round rebroadcasts N 2 copies of the
message. Then, the system is able to reach a consistent view about the mes-
sage in N nodes by voting on the N 2 copies. The conservative design option
is unacceptable to the RTEM system because large amount of application
data will result in very poor system performance. A design trade-off has to
be made between system dependability and performance.

Let us consider that an erroneous data value is generated by one node
and broadcast differently to other nodes, which also receive good copies of
the data from healthy nodes. If the erroneous data value has an acceptable
deviance from good copies, it will not be excluded from voting. After voting,
the system may keep different data values of the same data message in good
nodes. That can be a malicious asymmetric fault. However, if homogeneous
hardware and software is used for all nodes, computing results are kept the
same for good nodes. Under this assumption, the simple majority voting
is adequate to detect and mask malicious faults no matter it is symmetric
or asymmetric. The shortcoming of homogeneous hardware and software

is that the system is vulnerable to a generic fault. N-version designs and
implementations are commonly used to cover generic faults. Nevertheless, it
introduces deviance too. Since the goal of RTEM is to develop a set of system

executive functions for a wide range of applications, we design the system in
such a way that it supports both homogeneous and N-version applications.
We leave the choices to application designers who should decide what type

of fault-tolerant system they want to have. A similar idea is applicable to
synchronization. A detailed discussion is beyond the scope of this paper and
can be found in the reference 110].
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5 Summary I
The dependability view proposed in this paper is an attempt at constructing
an independent system view in order to capture design for highly dependable
systems. The two symbols, FCR and RMT, are powerful because they
are closely associated with components and functions which are two basic
building blocks in system design. I

We are currently formalizing the definition and property of FCR for
dependable system design. The partitioning of systems into physically inde-
pendent segments has long been used to enhance system reliability. For an U
ultra-reliable redundant system, such partitioning is crucial to the system's
dependability. Each independent segment is a natural FCR and is designed
to limit the physical damage of a fault within a region to that region [111, and I
to localize the area in which fault recovery and repair are required [121. The
system dependability view is based on an extension of the definition of FCR
to include the attributes necessary to define both physical and functional I
partitioning of hardware, software of functions, and to unify the concepts of
fault and error containment.

We are also investigating a taxonomy of RMT's based on the hybrid I
model. The taxonomy will provide a systematic guidance for system en-
gineers to select proper RMT's to meet system dependability requirement.

The formal FCR, combined with the RMT taxonomy, will establish a foun- U
dation for constructing a formal system dependability view.
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Abstract

Developing iLult-tolerant real-time systems is complicated because they are often comprised
of many special-purpose architecture components with non-standard interfaces. Furthermore,
programming languages for these systems typically complicate the expression and enforcement
of timing, concurrency, and fault-tolerance requirements. In this paper, we present the RTC
programming environment that we are developing for the IEEE POSIX.4 standard interface.
The RTC environment integrates explitit expression for timing and concurrency constraints and
provides mechanisms for programming time fault-tolerance. We show how RTC run-t ime system
enforces these constraints using the IEEE POSIX.4 interface. This use of a standard interface
mitigates some of the complication present in designing fault-tolerant real-time applications.

1 Introduction

In real-time applications such as submarine command control and avionics, there are both timing

constraints and shared resource consistency constraints that must be predictobly met. These ap-

plications are often controlled by a distributed system to match the distributed topology of the

components and to provide better performance through concurrency. Furthermore, many of these

applications control delicate applications with severe consequences if these constraints are violated

and left untreated. Programming such distributed real-time systems to meet timing constraints,

consistency constraints, and provide fault-tolerance is a complex undertaking.

There are soveral current practices that add to the complication of developing fault-tolerant

real-time systems. Most work in fault-tolerance for real-time systems has used special-purpose

architecturi- that incorporates techniques such as redundancy and voting [1, 2]. Using special-

purpose architectures makes the problem of programming real-time systems difficult because it is

usually not possible to take advantage of existing software tools. Also, software th" is d'veloped

'In this paper we use the term architecture to refer to a system's underlying hardware and operating sysstem
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Figure 1: Design of Complex Fault-Tolerant Real-Time S'stn•inm

for such architectures is not usually portable or re-usable. This phenomena is depicted in Figure,,

1, where an extra layer of device-specific code is required to coordinate the various hardwar, I
components to realize an appfication. Since this layer is special-purpose and tailored to both the

hardware and appfication, the system can not be easily modified or ported. i
Another problem adding to the complexity of system involves the use langua.ges such as Ad;, {3j

for application programming. Ada requires that static priorities be assigned o, tasks Wo "expre/

timing constraints. Since timing constraints are not explicitly stated, but are tiddt-i in the relative

priorities of tasks, constraints are difficult to write, verify and modify. Detecting and recovering

from constraint violations is also complicated by the constraints being hidden. Other difficult i"•

with Ada for real-time programming, such as its use of mutual exclusion with the possibility of

priority inversion, are mentioned in [4, 5]. I
To address these difficulties in designing complex fault-tolerant real-tinme systems, we have

designed the RTC software system that allows the explicit expression of liming. consistency, anjd

reliability constraints in the application program, and supports their enforcement while executing

on a .standard interface to the architecture. f'he RTC programming language constructs supporl 3
concurrent real-time programming by combining an abstract data type paradigm with a transaction°

based paradigm while adding provi.ions for explicitly expressing timing and precedence constraints.

The constructs are designed to be embedded in a host language: our current implementation is inl C.

but other host languages. such as Ada. can also be used. The RTCrun-time system uses a special

form of locking of shared resources. including processors. to allow a prioi vt-ased scheduler ile I
architecture to enforce lhe constraints expressed in the program \withoul violating shared resou rc,

consistency constraints. To achieve porta lilitv and software re-usabilitv among niany widelv1vused 3
architectures, we are inipleienting the IRTC" programming environimeli to ,x"cute "on top of.

arclit (ectul I C hiat adhere to lhe proposed IEEE POSIX 1003.4,, stau,,I krd for real-liinc operatinlgi

systel I interfaces. That is. the device-specific code is hidden under a standard POSIX interface, as

show,%n in Figure 1. T' his design allows all appplication software to assume a standard interface to the
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architecture, thus allowing software development that is independent of the underlying arcl,itectilrp

and eliminating the need for device-specific code in the development of a compleX ;a)plication.

We use this RTC/POSIX interface to support fault-tolerance in the application software, instl,(I

of, or in addition to, fault-tolerance techniques in the underlying architecture. Tie form of fault-

tolerance that we address in this paper deals primarily with timing faults, which occur wheu an

application violates its timing constraints. Timing faults can occur for reasons such as a component

failure or a transient overload. Since meeting timing constraints is required for correct execution

in a real-time system, tolerance of timing faults involves ensuring that the system can achieve a

consistent state (i.e. a state that meets safety requirements) when a timing, fault occurs. For

instance, if a submarine control program either misses its timing constraints or appears that it

vwill miss its timing constraints, the control program should allow the system to recover without

disaster.

To demonstrate these techniques, we will use a submarine application called MATE (Manual

I Adaptive TMA (Target Motion Analysis) Evaluator). The MATE application is an interactive

display application that is used to compute a possible range, course and speed of a sonar contact.

MATE consists of three major activities, the sonar input system, the MATE algorithm, and the

display. The sonar input system simulates the output of a submarine sonar system and producesI contact reports called Filtered Input Data Units (FIDUs) at a 20 second rate. The MATE algorithm

uses FIDUs and operator selected range, course, and speed settings to produce a data point on the

display. The processed data appears on the display as an unaligned vertical stack of dots. When the

operator enters a new range, course or speed solution for the contact, the FIDUs are reprocessed

by the MATE algorithm and displayed. When the dots are aligned vertically, the operator has

found a possible solution. There are timing constraints on the input and generation of the output

that must be met for correct performance. Concurrency control for shared resources, such as the

FIDUs, must also be provided. We show how the RTC/POSIXsystem can be used to express these

constraints, enforce them, and handle timing faults.

This paper is organized as follows. Section 2 presents the RTClanguage constructs and their use

in the MATE application. Section 3 briefly describes the proposed IEEE POSIX real-time standard,

and Section 4 describes how the RTC run-time system enforces the constraints expressed by the

j constructs by using a POSIX compliant real-time architecture. Section 5 summarizes strengths and

weaknesses of our approach for supporting the development of complex real-time systems.

I
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2 The R7TC Programming Environment I

"The UTC programming environiment consists of a svt of language constructs that exp real 3
time concurrency constraints ln a host progranining language, and a run-time system that uses an

underlying operating system to enforce these constraints. Our current inpltementation is embnedded

in the (' language.

2.1 RTC Resources I
RTC resource constructs provide abstract views of shared system entities such as devices and data

structures. Each resource has private data structures and defines a set of actions that can be

invoked by processes to examine or change the resource's private data. In the MATE example.

there are several instances of resources including the FIDU Record and the Display. The FIDU

Record requires concurrency control between the Sensor Processes whiclh write to parts of the FID)!

Record and the MATE process which reads from all of the FIDU Riecord. The Display resource 3
requires that actions on it be atomic so that no incomplete or jumbled displays are seen. An outline

of the ITC definition of a FIDU resource is shown in Figure 2. Each action specifies parameters

for exchanging information with its invoking process and a compatible declaration to indicate

permissible overlapping of execution of the action's execution that will preserve the resource's state

consistency. For instance, in Figure 2, a FIDU-read action can overlap with with other FIDU_rcad I

actions. However, a FIDULwrite can not overlap with any ,ther action. Note that the compatibility

I
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that can be specified is more general than typical read/writt, compatibifity, although i'adi rit,

is all that is illustrated in this example. The I'_A1Ot{T exception handier for actitni)i>liu i,

Figure 2 is called by the run-time system when the process that calls the, act ioli amts lt>, t'1

discussed later).

2.2 RTC Processes

I RTC processes constructs express how the application uses the resources. An example of the NM] It

process expressed with RTCconstructs is shown in Figure 3.I
Action Invocations. A process may invoke actions of resources sywchi-onorisly. whih caust,ý

the process to wait for action invocation to return, or asynchrolnously, which causes tile proce'ss to

continue executing. In the example of Figure 3, process MATE issues:

action Display.output(out put-data)

to invoke the output action on the Display resource synchronously with pararnieter output-data. The

call:

I action& (FIDU -read-done) FIDU.read (FIDU.info)

invokes action read on resource FIDU with parameter FIDU-info. This call is asynchronous so that3 MATE does not wait for the action invocation to return before executing its next statement.

Events. In the asynchronous action call that we just discussed, FlDU7read-donic is a of predefined

RTC type called event. An event has absolute time values that are established in three ways: 1) a

signal statement by a process or action, which causes the current absolute time to be assigned to

the event variable; 2) a clear statement by a process or action, which sets the event variable to an

infinite absolute time; or 3) the run-time system signaling an event associated with the cornpletion

of an asynchronous action invocation (such as F1DU-read-done).

Timing blocks. RTCTimning blocks express earliest start times (after), latest start times (be-

fore), deadlines (by), and periods (every) for a series of statements using timing expressions

involving event variables and relative times. A construct to express maximum execution time (ex-

ecute) is also provided. Exception handlers for violations of many of the constraints expressed by

these blocks can be expressed. There are several timing blocks in the example of Figure 3. One

I •Liming block states: by last-update + lOsec; the block expresses a deadline by which the part of the

MATE process shown in Figure 3 must complete. Near the bottom of figure 3 is the EDEADLINE

exception handler that interrupts the constrained statments to execute if the deadline is violated.

Another example of a deadline is: by op-input; where op-input is a global event signaled by the

process monitoring the operator's track ball input. This deadline serves to interrupt the calculation
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process MATE

event last-update, FIDU-read-done, OP-read-done, op-input

output-calculated = FALSE

by last-update + 10sec do
guaranteed
while (!output-calculated) {

before (last-update + 8sec) do I
by opinput do

exclusive

action& (FIDU-read-done) FIDU.read (FI[)LUinfo)
action& (OP-read-done) operator.read (op-info) I

end exclusive
after max (FIDU-read-done, OP-read-done) do
calculate output-data I
output-calculated = TRUE

except /* by opinput */
when E-DEADLINE /* op-input */ do clear op-input end when

end do /* by op-input */ I
except /* before last-update + 8sec /

when ESTART do
output-data = quick update i
output-calculated = TRUE

warn operator of possible MATE malfunction
end when /* ESTART */ I

end do /* before last-update + 8sec */
) /* end while */

no-except
action Display.output(output-data)
signal (last-output)

end no-except
end guaranteed

except /* by last-update + 10sec */

when EDEADLINE alert operator of MATE malfunction end when
end do /* by last-update + 10sec */ I

Figure 3: Example of MATE Process with RTC Constructs I

I
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of the output data when new input data arrives; MATE then loops back and starts calculating 1tc

I output data again.

Action Invocation Precedence Ordering. Flexible expression of precedence constraints (c(iL

currency) within processes and between processes is supported using a combination of evenits, and

synchronous and asynchronous action invocations, along with earliest start time constraints, For

instance, concurrency within a process is expressed using asynchronous action invocations to "fork"

off concurrent action invocations such as FIDU.read and operator.read in Figure :3. Then later in

the process, the earliest start time constraint:

after max (FlU D1read-done, O Pread-done)

is used to "join" execution by requiring that, at this point, the process will wait for the two read

actions to complete. By expressing fork and join semantics, RTC allows a powerful method for

expressing concurrency within a process. Note that global events and aftcr clauses in timing blocks

can also be used to express precedence orderings between actions in different processes.

Exclusive blocks. The constructs begin exclusive - end exclusive denote a series of slate-

ments where all action invocations in the series must be executed on their resources without in-

compatible actions (as defined by the resource compatibility construct mentioned above) being

executed while the block is active. hi the example, an exclusive block is used to ensure that no

incompatible action, such as a write to the FIDU, is allowed while the FIDU and operator input

j are being read.

Guaranteed blocks. The constructs begin guaranteed - end guaranteed denote a series of
action invocations that must execute without delay due to contention for resources. In the example,

the set of actions to read the inputs, calculate the output, and output the results appear within a

guaranteed block. Immediately inside this guaranteed block there is a. timing block with a latest
start time constraint of last-update + 8sec. In this part of the process, we make the assumption

that the actions take a maximum total of two seconds if there is no contention for resources. By

constraining the actions with a latest start time of two seconds before the deadline and placing them

in a guaranteed block so that there is no contention for resources, we know that the actions will only

start if they will complete by the deadline (barring faults). This technique allows detecting potential

deadline violations early so that they can be avoided. In the MATE process, if the actions are not

started early enough, the ESTART exception handler can generate a quick, complete, acceptable,

but less accurate display.

No-except blocks. The constructs begin no-except - end no-except block exceptions for

certain parts of the process. In the example, the call to Display.output and the updating of
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the associated control information is done in a no_4except block. This is done so that a deadhiti

exception will not violate the atomic property of the Display device nor will such an exceptiti I

leave the control variable of the MATE process, last.updiact, unsignaled.

2.3 Timed Fault Tolerance: Support for Timed Atomic Behavior 3
The techniques that we use to handle timing faults are based on atomic action paradigms that

have been widely used to support reliability in non-real time concurrent systems 16, 7]. In tlhiý 3
traditional paradigms, changes to system resources and the environment are performed by actijol

(sometimes called transactions) with the property that, even if faults occur, either 1) the action 3
completes and transforms the system to a consistent state, or 2) it appears that the action did nlot

execute and the system is left in an original consistent state. That is, atomic actions perform all-or-

nothing execution. Unfortunately, traditional atomic actions only require that all actions ctr(fttally I
decide whether to execute or not [71; there is no deadline by which the decision and action must

be completed. To incorporate the timing constraints of real-time systems into the consistency that 3
atomic execution seeks to preserve, we would like to modify the definition of atomic behavior to

allow all-or-nothing execution within timing constraints. Since meeting this criteria is provably 3
impossible when faults [8] can occur, we alter our definition of timed atomic behavior further to be:

timed atomic behavior is all-or-nothing execution within timing constraints or an exception. This

definition is a generalization of the definition of timed atomic commitment presented in [9].

Specifying and Enforcing All-or-Nothing Behavior. To maintain consistency of the system 3
it is often necessary to specify that either all actions in a set execute completely or none of them

execute. To specify that all statements in a block complete, a no-except block can be used to I

delay exceptions until after the statements complete. Specifying the "nothing" alternative involves

ensuring that no actions are executed if exceptions are possible during the no-except block. This

is done by nesting the no-except block inside a guaranteed block as the first statement of a timing

block. The timing block specifies a latest start time that is sufficiently far in advance of the deadline

to allow the statements to complete when there is no contention for resources. The guaranteed block I
ensures that there is no contention for resources. If the statements are not started by this latest

start time, the E.START exception is raised and none of the statements start; thus, achieving the 3
"nothing" alternative. Note that the programmer must know the maximum execution time of the

statements to be guaranteed in order to establish this latest start time. This technique is used to

ensure the atomic update of the display resource in the MATE example (See Figure 3).

While this expression of "atomicity" is somewhat unconventional, the fact that real-time control

applications directly affect the environment and are time-constrained makes traditional atomic

rollback [7, 61 impossible. For example, if an action moves a robot arm from a starting position.
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a compensating action [10, 11] can bring it back to the starting position. but unot vra.se the fact

that the move was performed or that the move took time. Thus, to achieve atoniicity iln a real-

time environment, we require that either all of the constrained statenient s complete Ome flev atey

started, or that none of them start.

Exception Handling. Since faults can occur, atomicity can not be guaranteed: lL(' blocks

therefore allow the expression of exception handling. We do not specify what the recovery actions."

are, but instead provide a general exception handling mechanism so that programmers call express

various forms of recovery, including compensating actions [11, 101. imprecise computationis [121, or

other forms of roll-back or roll-forward techniques. As described in Section 2. blocks call specify

exception handlers that interrupt execution for violation of lastest start times, deadlines, maximum

execution times and simultaneous execution. Furthermore, action declarations in 11T7 resources

have an EABORT exception handler that becomes ready if the action invocation in the calling

j process is aborted. This exception handler allows the action to restore the resource to a consistent

state; perhaps by employing a compensating action.

The execute timing block constraint be used to express a form of early detection of a potential

deadline violation. If a fault causes a process or action to execute too long, it may eventually violate

its deadline. Ilowever, by handling the execution time constraint before the deadline is violated,

the deadline violation may be avoided. Consider the RTC code:

execute 5sec by NOW + losec do
action r.a (parains)

exceptwhen EEXECUTE do early recovery actions end when

Swhen EDEADLINE do recovery actions end when

end do

In this example, if a fault caused action r.a to execute for over 5 seconds, then the EEXECUTE

exception handler may be able to avoid a deadline violation that otherwise would have resulted

from the fault.

For hard deadlines, which may be so critical that exception handling can not restore a consistent

state if the deadline is missed, the RTC constructs can be used to specify an intermediate deadline

that is sufficiently far in advance of the actual deadline to allow for recovery. For instance if a set

of statements S has a hard deadline D, and restoring a consistent state from partial execution of S

takes r maximum execution time without contention for resources, the following timing block can

improve the chances of being in a consistent state at D (let D' = D -
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by D doby D)' do

statements S
except /* D' violated '/

when E-DEADLINE do
guarantee

recovery (r time)
end guarantee

end when
end do

except /* D9 violated *

when E.DEADLINE do emergency actions end when
end do

Although this technique is pessimistic by raising exceptions when a violation may not occur in

actuality, it improves the chances of being in a consistent state at D.

3 The POSIX.4 Standard Interface I
Our approach to supporting the development of portable real-time software is to implement the RTC

run-time system on an architecture that adheres to the proposed IEEE POSIX 1003.4a standards

for real-time operating systems. We now present an overview of these proposed POSIX real-time I
standards.

Since 1985 the IEEE POSIX (Portable Operating System Interface) group has been developing 3
an operating system interface standard [13] with the aim of standardizing the software interface

over various architectures. They have also formed several subgroups, including one assigned to 5
work on real-time extensions, now called 1003.4 [14], and one to work on a thread-based extension,

called 1003.4a [15]2. Although these extensions are not officially approved standards at the time

of this writing, government agencies and industry have already demonstrated strong support for

them. For instance, NASA has mandated that the software for the navigation system on its space

station Freedom be POSIX., compliant. I
Some of the features of particular importance in the POSIX.4 standard are:

* Threads - A POSIX.4 process is a unit of allocation for memory and devices. POSIX.4 de- I
composes a process into threads, each of which is a flow of control with its own program

counter and run-time stack. In contrast to a Unix system where processes have a single 3
thread, POSIX.4 allows programmers to take advantage of inherent parallelism in applica-

tions. Threads have minimal private state because they share state with all threads in the

process. Threads can be scheduled individually, or a process can be scheduled and then locally

determine which of its threads is to execute.
2Since this paper is concerned with real-time, we will use "POSIX.4" to mean that both of the POSIX 1003.4 and

POSIX 1003.4a standards apply.

I
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* Real-Time Scheduling Interface - POSIX.4 require'; scheduling queues for a minimum of 32I Ipriority levels, where threads from a higher priority queue are schedlated (preerriptivvly) before,

threads from lower priority queues. Each thread may specify its priority and whether it is t(

j be scheduled round robin or FIFO (round robin with infinite quantum).

* Signals - POSIX.4 requires at least 32 different signals. POSIX.4 signals are asynchronous

messages between threads that contain very little data. Threads may send a signal. may wait

on the arrival of a signal, and may have an asynchronous signal handler invoked upon arrival

i of a signal. POSIX.4 also supports real-time signals that can be queued at the receiver.

* Timers- POSIX.4 requires for system clocks and per-thread timers that can measure absolute

and relative times on the order of nanoseconds. Timers can be "one-shot" or periodic, and

can use either relative or absolute time; they notify threads of their expiration via signals.

* Shared Memory and Mapped Fils - POS[X.4 allows the specification of main memory regions

that can be mapped into the address space of multiple processes, allowing multiple processes

to share memory. When one of the sharing processes writes to memory, all of the sharing

processes can road it, thus allowing efficient sharing of data without explicit communication.

. Alessage Passing - POSIX.4 requires a message passing facility that includes provisions for

queuing messages and several means of retrieving them. Message queues are system resources

that are allocated to processes. A process can establish various attributes, such as queue

length, for the queues that it owns. Asynchronous sends and receives of messages are sup-

ported.

I Binary Semaphore and Alutex - POSIX.4 requires binary semaphores as a means of synchro-

nizing threads of different processes. It also requires Afutezes and condition variables as a

means of synchronizing threads within in a single process. Mutexes, like semaphores, providr

mutual exclusion among threads. However, mutexes can take advantage of the fact that they

are local to a single process and can be implemented in the shared memory of that process.

Mutexes and condition variables can be implemented with priority inheritance protocols [16]:

this form of implementation is optional, but has been shown to be beneficial for preserving

predictability in real-time systems [4].

These facilities are described in terms of a common interface that must be provided to applications.

An exact implementation is not specified and, in fact, can vary as long as the required interface

is provided. For instance, nothing precludes the architecture underlying the POSIX.4 interface

from being a real-time architecture, such as SIFT [1] or MAFT [2], that includes traditional fault

tolerance techniques such as redundancy and voting.
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The POSIX.4 standard developers did not seek to describe every capability that should bw

provided by a real-time operating system, but instead provided a platform for building deired

features. Therefore, it is not surprising that the capabilities described by the standard alone

have deficiencies for supporting fault tolerant concurrent real-time systems. In particular. fhe

standard does not require integrated support of real-time concurrency and reliability constraints

such as: absolute timing constraints, exclusive execution constraints, and timed atomic behavior.

For instance, POSIX.4 supports priority-driven preemptive scheduling that can be used to meet the 3
timing constraints of processes, but the arbitrary preemption ignores the consistency constraints

of resources. On the other hand, POSIX.4 supports mutual exclusion techniques to maintain 3
the consistency of shared resources, but these techniques disallow potential concurrency and ignore

timing constraints. Furthermore, the POSIX.4 standards also do not directly require fault tolerance I
support.

Although the POSIX.4 standard has these important deficiencies, we will show next that the

capabilities mandated by the standard are sufficient for implementing the RTC run-time system 1
which can support the development of real-time software that meets timing, concurrency, and

reliability requirements. Since it appears that the POSIX.4 standard will soon be widely-used,

building such a software system using the POSIX.4 standard should also enhance portability and

re-usability of RTC based software that is developed. 3
4 Implementing RTC on POSIX.4 Compliant Systems

The constraints expressed by the RTClanguage constructs are enforced by a run-time system built

on the commercial Lynx [16] operating system, which is POSIX.4 compliant. The RTC run-time

system consists of a set of managers each of which is implemented using a POSIX.4 process and hne

or more POSIX.4 threads. Each RTC process is managed by its own process manager (QM), each

RTC resource has a single resource manager (RM); and each processor has a processor manager

(PM) which is used to reserve processors for guaranteed executions of actions. There is also a

centralized event manager (EM) which interacts with process and resource managers to implement 3
RTC events.

Scheduling. The Lynx operating system provides for scheduling queues at 256 priority levels U
which contain threads from all Lynx processes. Since reliable systems should be dynamic to allow

for faults and other unforeseen occurrences in the environment, we wish to use a dynamic schedul-

ing algorithm in the RTC run-time system. Preemptive Earliest-Deadline-First (EDF) scheduling

algorithms have been shown to be optimal for meeting timing constraints in dynamic systems [17].

Simulating earliest deadline first scheduling with a priority-based system is possible [18], but re-

quires infinite priorities (a priority for every possible deadline). We are currently investigating the 3
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best assignment of threads to priority queues that best supports EBF scheduling. This assignment

seeks to minimize the maximum length that any queue will reach because the maximum queue

length is used to quantify the loss of performance, compared to the optimal EDF scheduling, that

our RTC/Lynx system incurs. In addition to an original queue assignment, each thread must in-

crease priority as its deadline nears. The exact details of this scheduling strategy are still being

investigated.

Run-Time Support for Timing Blocks. To enforce the after construct of a timing block in

RTC process q, the process manager task for q, QMq, suspends q and uses the POSIX.4 timer and

signal capabilities to request a sicrual at the earliest start time. When the signal arrives, process

q re-activates. To enforce the before construct of a timing block in process q, QMq requests that

a POSIX.4 timer send a signal at the the latest start time. An exception handling thread waits

for the signal. If the signal arrives before process q executes the statments of the timing block,

the exception handler thread is activated and it deactivates the thread for process q. Otherwise, if

process q starts the statements of the timing block, process manager QM9 deactivates the exception

handling thread and removes the timer signal request. The by deadhiine construct of a timing block

in process q is implemented using a stack to keep track of current deadline. As nested timing

blocks are entered by process q, QMq pushes the tighter deadlines on the stack; as the timing

blocks complete, QAfq pops the deadline from the stack. Process manager QMq uses the deadline

on the top of the stack to determine the scheduling priority of the process, and to set a timer signal

to indicate deadline violations. Again, a separate thread is used to wait for the deadline signal and

then Derform exception handling.

Resource and Processor Management. To ensure correct execution of an action, we need

the ability to block incompatible action invocations. POSIX.4 provides semaphores and mutexes

which block incompatible actions, as well as all concurrent actions, by using mutual exclusion.

However, these mutual exclusion techniques disallow many concurrent accesses of a resource that

would not violate consistency and as such they reduce utilization that could be valuable in meeting

timing constraints. Instead of mutual exclusion, the RTC resource managers allow more potential

concurrency through semantic concurrency control [19]. This concurrency control mechanism uses

action locks at both the resource and processor level. At the resource level, if an action is locked,

then compatible actions may execute, but no actions that are incompatible with the locked action

may be executed until the lock is released. A process manager QMq requests action locks from a

resource manager RAI, by sending a POSIX.4 message specifying the set of actions that process q

wishes to lock on resource r, {ai,.. .,a,}. RAI, grants the request only if each action in {a,,..., a,)}

is compatible with resource r's currently held action locks and pending requests of higher priority.
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If RM, does not grant a resource iuck request, it queues the request based on process q's priority.

Resource managers use priority inheritance [4] by setting the priority of all currently executing

threads for actions that are incompatible with the requested action lock to at least the priority of

the requesting process.

Process manager QMq can also request action invocations from an RM by sending the request I
in a POSIX.4 message. When RMA gets an action invocation request a from QMq that has not

been locked, it must first lock the action. Once a lock is held for the action, RAI, creates a POSIX.4 3
thread t for action a and grants t access to the data of resource r through the POSIX.4 shared

memory facilities. If process manager QMq holds a processor lock, RAI, creates t with highest 3
priority; otherwise, RAI,. creates t with (requesting) process q's priority. If process q's action

invocation is synchronous, process manager QMq suspends q while waiting for return parameters

from t; if the action invocation is asynchronous, q is not suspended. When action invocation thread I
t completes, t sends the action's return parameters to a thread of the process manager QMq in a

POSIX.4 message. This thread shares memory with process q so that it can accept the returned !

parameters and update their values in process q's state.

Meeting Constraints. To ensure exclusive execution, a process manager must obtain action

locks for all action invocations in an exclusive block before it invokes any action invocations in the

block. The action locks must be held until all action invocations in the block have completed. In

this way, no action invocation that is incompatible with any action invocation in the exclusive block

will overlap the execution of the block. To ensure guaranteed execution, a process manager must 3
obtain action locks and a processor lock for all actions invoked in the guaranteed or simultaneous

block before it invokes any action in the block. All locks are released when the block completes. The 3
action locks ensure that no action invocation of the block is queued by an RM. The processor locks

ensure that the action invocations execute on their assigned processors when the action invocations

are ready and that the action invocations are not preempted.

5 Conclusion 3
This paper has described how the RTCprogramming environment can be used to naturally express

real-time concurrency constraints in a C program so that the run-time system will enforce them on

a POSIX.4 compliant architecture. This explicit constraint expression simplifies the development of

the application software compared to the "expression" of constraints found in Ada. The RTC run- 5
time system provides concurrency control through a locking mechanism that ensures the consistency

of the shared resources. This mechanism potentially allows more concurrency with consistency than !

POSIX.4's and Ada's mutual exclusion capabilities. Once the locking mechanism determines which

actions of a resource can execute, the run-tine system employs the POSIX.4 preemiptive priority- 5
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based real-time scheduling for all threads (both actions and processes) in the system. Thlis, h,,

system integrates concurrency control and real-time scheduling. Moreover, the implenentation of

the RTC system using the IEF;E POSIX.4 stndard for architecture interfaces supports portability

and re-usability of software across architectures that will ease application development. TI haindl,,

timing faults, we also showed how the RTCconstructs and run-time system can be used to enforce

the requirement (at the software level) that either all of the constrained statements execute within

timing constraints, or that none of them start. If faults occur, they are detected through exceptions

and as exceptions.

A drawback of the RTC approach is the overhead incurred due to the managers in the RTC'

run-time system. Timing measurements of our preliminary implementation can be found in [5].

However, it is our belief that predictable performance is often more important than speed in a

real-time system that must be reliable [20, 21].

We have used the RTC constructs to program distributed robotics applications that have real-

time concurrency constraints, such as two arms that must coordinate to lift a moving object within

timing constraints [5]. We are currently implementing the RTC/POSIX system and developing

submarine applications, including MATE.
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ABSTRACT

This paper describes the ongoing effort in the Submarine Launched
Ballistic Missile (SLBM) Software Development Division (K50) to

establish a metrics program to cover the entire software life cycle
process. This program will provide assessment information on both the
division's software process and its products. In addition, this metrics
program will provide a common terminology across the organization and a
metrics database for all levels of the organization for present and

future endeavors. This paper describes the objectives of this program,

the approach used to identify a set of candidate metrics, and the
selected set.

I 1. Introduction

To understand the role of a metrics program within the SLBM Software
Development Division (K50) it is necessary to understind its mission and the

types of software products it develops. The basic mission of this division
is:

I "To design, develop, produce, and maintain the shipboard Fire Control
Programs, Data, and Documentation for all submarine launched
ballistic missile systems, the associated support software (ex.

compiler, linker, loader, etc.) and the software for effective targeting

of the weapon system."

Notice from this mission statement that this division deals with three types
of software: fire control, support, and targeting. Each poses both similar
and unique problems in the various phases of the life cycle. All follow the
fundamental waterfall chart for life cycle development and all follow a basic
software framework that was established within the division. In addition,
all three types have an established change control process as part of an

overall corfiguration master plan. Each change control board, however, has
slightly different software change control forms and problem reporting
mechanisms. Each type of software follows a different standard for format
and each type is developed by a different organization within the division.

1
I
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In November oi 1991, the division head, as part of an overall i
strengthening of our software development process, directed that a formalized
metrics program be developed within the division that would cover all the
different types of software and life cycle phases. He felt that "metrics"
were being used in the software process and "kept" for historical pirposes,
but to varying degrees for the different types of software and life cycle
phases. For the initiation of this metrics program, four basic objectives
were established:

1. Identify all the metrics currently collected both informally and
formally within the division for all the software types. I
2. Determine whether the metrics currently collected are being

effectively used for both assessment and control of our software I
process. If they aren't, develop a plan to accomplish that.

3. Determine what additional metrics need to be gathered and the I
implementation mechanism for areas in the process that need
strengthening.

4. Develop a common terminology for metrics within the division, so i
that for a given metric there is an accepted definition/usage across the
organization no matter what the type of software. 3
From these basic objectives and the structure of the division, some

additional objectives were identified upon which the metrics program would be
built. In the establishment of a program of this nature, a critical

requirement is to form the objectives of the program before identifying the
metrics to support it. One does not simply collect data without any

objectives in mind! These additional objectives included: 5
a. Concentrate on quality rather than productivity type metrics. We
were concerned with both the quality of our development process and the

resulting products. These metrics were to support the overall software

process and management decision making at all levels.

b. Use itive implementation approach. Implement and evaluate a

few metriu- a time rather than establish a large data collection I
process requiring a lot of resources in time and personnel. We wanted

to show the benefits of such a program and get support for it by all

levels. The best way to do this was to demonstrate the benefit with a I
few initial metrics, gain acceptance with these, and then implement more
in an iterative fashion.

c. Involve all personnel in the development, implementation, and I
analysis of the metrics program. The primary reasons such programs fail
is a lack of commitment by the various levels of the organization. If
all levels are involved in the shaping of the program, you'll take a big I
step in gaining support for it.

2. Approach 1
Our approach to establishing a metrics program was threefold: 5
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1. Research work efforts within the division and to study software
metrics, their applications and benefits to the overall software development
process.

2. Establish a Metrics Study Group (MSG).

3. Implement a well-defined metrics selection process.

2.1 Research Work Efforts

The initial groundwork for the metrics program was laid by the authors.
Particular areas to be researched were identified. These areas included work
efforts accomplished within each branch and by the staff, how the waterfall
software development process facilitates these work efforts, and how software
metrics could be applied to these efforts.

2.2 Establish Metrics Study Group (MSG)

It was apparent that two people could not effectively accomplish allS these tasks in a timely manner. The division head asked that each branch
appoint a person to become a member or point of contact (POC) for the Metrics
Study Group (MSG). Once the group members were appointed, the next step was
to define MSG tasks, as well as POC responsibilities.

The MSG set the following as their tasks:

1. Define objectives for the metrics program

j 2. Research metrics concepts/applications

3. Identify areas of the software development process to which metrics
should be applied

4. Define a specific set of metrics to be collected and implemented and
develop a written metrics plan, to be updated as needed

POCs were chosen such that all three principal work areas were well-
represented. There were individuals representing the development of fire
control, support, and targeting software. Additional areas covered were data
and documentation.

Also, each POC chosen had an understanding of how their organization
operated within the software development process. They were not new employees
just establishing themselves within the organization.

POC responsibilities were defined in two parts. Initial tasks were
assigned to get the metrics program in place and then additional tasks were
defined once the metrics were being collected/analyzed.

I The POCs' initial tasks were to gain an understanding of software
metrics and how they apply to their branch's work efforts. Several training
sessions were held and reading material was given out and discussed at group
meetings. Next, each POC set up an interview session with the authors and
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respective selected key branch personnel. The purpose of this meeting was to
uncover any metrics that the branch might already be collecting and using and
to discover the areas in the development process that needed strengthening.
Since the average branch member attending these meetings had not had any I
formal training in software metrics, a basic presentation on software metrics
was given by the authors to tip-off the interview meeting. After the
presentation, previously formulated discussion items were given to the meeting I
attendees to help stimulate discussion.

The MSG then analyzed the interview results from all branches and
pointed out commonalities that occurred across branches within the division.

Common areas were used as a starting point to define a candidate set of
metrics which would be collected/analyzed as a part of the metrics program. 3

Once the candidate metrics are finalized, the POCs' task will be to set
up data collection procedures within the respective branches. They will serve
as focal points within the branches and the division on the data being
collected. They will monitor data being collected and report to the MSG the
effectiveness of this process. Analyzing data collected, reporting progress
to management, training branch members (metrics awareness) about software
metrics usage, and continuing to learn about software metrics are all
important on-going responsibilities of the POC.

2.3 Metrics Selection Process 5
The metrics selected to be a part of the program were chosen based on

two inputs. First, a prioritized list of areas in which to collect metrics
was determined through the interview process. Second, a specific set of m
selection criteria was defined by the MSG. This was based upon impact, what
other organizations were doing, and overall quality objectives of the
division. I

Branch interview sessions brought to light several key points taken into
consideration in selecting the candidate metrics. It was clear that metrics

were presently being gathered within the organization, but in a very ad hoc
fashion. Little effort was being made to formally record past information
which could be utilized to aid in making future decisions. Next, some

branches used metrics more than others due to the nature of their work
efforts. A third key point was that sizing and scheduling were common themes
in most work areas. Finally, even though the division maintains a lot of

different sets of computer software, few maintenance metrics were being I
gathered.

Six specific areas targeted for metrics were then defined. These were: 5
1. Scheduling, sizing, development manning
2. Better utilization of Configuration Management board information

3. Maintenance/reusability metrics I
4. Design metrics such as complexity, size, speed, and modularity
5. Requirements development and stability

6. Testing metrics: unit/modular, inte' rated, system, and quality U
assurance

In conjunction with this prioritized list, the MSG also read and 5
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discussed other organizations' metrics programs. As each area of interest was
discussed, each of the following organizations was researched for which
metrics they collected within that area:

a. Army, Air Force, Navy

b. Other major organizations at NSWCDD
c. Professional Societies: IEEE, AIAA
d. IBM*
e. HP*
f. MITRE
g. NASA

*Please note that IBM and HP are two organizations noted by the Software

Engineering Institute as having a level 5 rating for the Software Process
Assessment Maturity Level. Having a rating of 5 indicates a very strong and
mature metrics program.

Twelve quality factors are defined by [RADC,83] to improve the overall
quality of software. Five of these quality factors were chosen as especially
applicable to the work efforts within the division. The five quality factors

chosen were Flexibility, Maintainability, Reusability, Testability, and
Reliability. The metrics selected were chosen to help improve the software
development process based on these quality factors. These particular quality
factors were chosen due to the maturity of the division's software products.

Another important concern in developing a metrics program is the impact
that it will have on the organization. A successful metrics program depends
on the quality of data being collected. Asking personnel to change their way
of doing their everyday job must be approached carefully.

The following criteria were also considered when the candidate metrics
were selected:

1. Data availability

2. Implementation time
3. Required tools
4. Required training
5. Necessary changes to the division's software development

process, including any changes to CM board policies and
procedures

3. Proposed Metrics

This section lists the candidate metrics that have been proposed based
on the selection criteria and the work that the MSG did as discussed in the
last section. Table I gives a listing of those metrics, a brief definition
and a group designation for the order in which the metrics will be
implemented. Group 1 metrics were defined to be implemented within the first
few months of establishing the metrics program. Groups 2 and 3 metrics will
be implemented at later dates. As part of the final metrics plan that is
being developed, each metric will have the following sections describing it:
Definition, Benefit, Implementation, Quality Factor, and Type. The Definition
will give the exact method for calculating the statistic. The Benefit section

will give examples of how the metric can be employed and the resulting value.

The Implementation section will discuss how the metric is to be collected, how
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often, who will collect it, who will analyze it, how it is to feed back into I
the process, and what tools may be needed for implementation. The Quality
Factor section will relate what Quality Factor the metric is associated with,
while the Type section will relate what level the metric will be of benefit to N
(management, branch, or the software process).

It is intended that the list will be dynamic in nature. If a metric 3
does not provide the benefit or information that is expected, other ones will
be considered. If there are areas in the software development process that
need additional metrics (it is anticipated that the requirements and design
phases will fall in this category), new metrics will be added to this list. A
good metrics program must be adaptable to a changing environment in order to
be a viable part of the process. 3

Table 1. Candidate Metrics

METRIC NAME METRIC DEFINITION GROUP
KSLOC Total number of executable lines divided by I

1000 .

KTLOC Total number of all lines divided by 1000 . 1

SLOCMOD Total number of modules. 1
NUMPEO Number of people assigned to a project per 1

month.

PERMOD .% of modules that have changed. 1
#OF PR'S/PROGRAM Number of problem reports (PR's) submitted 1against a program.

DEFECT DENSITY Number of Software errors per KSLOC. 1

PR STATUS Number of 'OPEN','ANSWERED', and 'RESOLVED' 1
problem reports under configuration
management.

REUSEMOD %6 of modules that have been carried over from 2
other software. I

PMU Program memory utilization. 2
MODCHG % of modules that have changed from one 2

baseline to the next.
DEFECT DENSITY/PHASE Number of software errors per KSLOC per phase 2

of life cycle.

ERROR URGENCY % of software problems requiring an immediate 2
fix over total number of software changes. .......

#OF PR'S RESULTING IN SCP Ratio of number of PR's to Software Change 2
Proposal's (SCP's)

ERROR CLASSIFICATION Kind of software error that was made. 2
ERROR SEVERITY Level of impact of the software error. 2

TESTCASE CLASSIFICATION How the error was found. 2
DEPENDENCE % of modules that call library, OS, or system 2

routines.

CHANGE DENSITY Ratio of number of SCP's over KSLOC. 2

NUMDOC Number of documents associated with a given 2
program.

DATABASE DEPENDENCE % of modules with database references. 2
PDIM % of errors introduced during the maintenance

phase.2

PDIE % of errors resulting from enhancements to a
program, 2

KSLOC/NUMPEO Number of thousands of lines of code
(developed, tested, etc.) per person per month

COUPLING '6of modules that call other modules. 3
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TTF Time to find and fix an error. 3
TTI Time to identify the source of the error• 3

TTC Time to determine a fix for the error. 3

TTV Time to test the fix for the error. 3

PMOCS % of modules violating coding standards. 3

SCP REASON The reason why a software change proposal is 3
,__,,,_,,,,,, _ necessary.

KPDL Number of design lines for a program in the 3
design phase.

# OF DOCUMENTATION PAGES Number of pages within a specified document 3

REQUIREMENTS TRACEABILITY Ratio of number of requirements at completion 3
to number started with.

# OF REQ. CHANGES/PHASE The number of requirement changes to the -ife
cycle.

This set has been selected based upon the objectives and stLucture of
the division and hence may not be applicable in its entirety for all programs.
An organization must tailor its program based upon its resources, needs, and

objectives.

4. Future Plans

The next step, after finalizing the metrics set, is tc develop the
implementation aspects of the metrics plan. Specific issues include who will
collect the data, how often, who will analyze the data, what results are to be
reported, and what data collection mechanism is to be employed. Also to be
considered are the determination of the effectiveness of such a metrics
implementation and what other metrics are to be considered for incorporation
into the plan. Since the requirements and design phases were deemed important
in both the conducted interviews and the overall objectives of the division,
more metrics in these areas need to be identified.

This identification of specific areas and supporting metrics will be a
continuing process. Once the division becomes accustomed to collecting and
utilizing a specific set of metrics, then, as part of the iterative process,
an additional set will be identified. The role of the MSG group in the future
will be to help in this identification process and in the implementation of
the supporting metrics.

5. Summary

In this paper we have described the effort undertaken within the SLBM
Software Development Division to strengthen its overall development process
for all of the different types of software that it produces. To do that we
established certain objectives based upon management and division inputs. A
committee of senior personnel from each branch within the organization was
then set up to develop this metrics plan. Using inputs from the organization,
the established objectives, and researching what other organizations had done
in this area, a candidate set of metrics have been identified. The selected
metrics were grouped into three categories based upon impact, data
availability, and ease of implementation. Over the next year data will be
collected, analyzed, and the results fed back into the process.

Key aspects in the development of this plan have been:
1) Establishing objectives, 2) getting participation from all levels of the

145



I

organization, 3) using an iterative approach for implementation, and 4)
maximizing the use of data that is currently being collected. For this to be
a viable program, getting the support of all personnel within the division ib
essential. To achieve this, ensuring their participation in developing the
program and training them in the effective use of metrics is tantamount. By
demonstrating the effective use of metrics in an iterative fashion, actively
seeking their help and cooperation, and keeping the lines of communication
open, we believe we'll have that support.
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ABSTRACT
The key to designing a real-time, large, KEYWORDS: System Design Factors, Structure

complex system is to optimize the design to meet the Design Decision, Allocation Decision, Optimization
requirements and desired measure of effectiveness. In Decision, Trade-off Decision, Large Complex Real-
order to achieve this, the system engineer/analyst must Time System.
have the capability to specify the design goals/criteria,
to quantify various aspects of the design, and to 1 INTRODUCTION
perform trade-offs among different design goals. One
of the mechanisms that provides these capabilities is The way a system is traditionally built, starts
the System Design Factors. Whether the system design with a customer who defines what is needed. These
emphasis is on real-time, largeness, complexity, needs are analyzed to determine the requirements
parallelism or any specific criteria, it requires a set of and specifications [EdH91]. In turn, these
System Design Factor to describe the properties, requirements and specifications are captured to
attributes and characteristics of that system. Each produce the initial design [Hoa9I]. Analysis is
System Design Factor must have its own metric to executed to assure that the initial design is complete
gaugeevery detail of that system. The metric describes and consistent [BIF9O], [Hoa9l]. This design is
the weaknesses and strengths of a specific area in the optimized iteratively until a feasible or optimal design
design. In turn, the correlation of the System Design is achieved [HNH91], [HNH92]. Collected results
Factor characterizesthe completeness and robustness of are then passed through for rapid prototype,
the system. Whether the system is designed top-down, assessment, evaluation, test and refinement to yield
bottom-up, or middle-out, the System Design Factors the final design [BoB85] [CYH91], [JeY91], [Kam9l],
have major influence in design capture and analysis, [SvL76I. Implementation and test are then carried
design structuring decisions, allocation decisions, and out to produce the final product, which is delivered to
trade-off decisions between various design structures the customer. Many times, the customer will
and resource allocation candidates. complain to the developer that the system did not

meet the needs. The common causes for failing to
The main objectives of the System Design meet the requirements might be one of the following:

Factors research are to provide a) A mechanism to (a) the needs specified by the customer were not
communicate from the customer to the development specific enough; (b) the needs were never clearly
team throughout various phases of system engineering, understood by the developers; or (c) communication
b) A mechanism to quantify and identify a large, among developers distorted the requirements as the
complex, real-time system r strengths and weaknesses development processes were performed.
so that effective comparison of different systems is
achievable and c) A mechanism for linkage of various The information understood by the whole
aspects of the design, which help the system engineeror system development team is crucial to produce the
analyst to specify, capture, analyze, design, prototype, final product that meets the customer's needs. The
test, evaluate, trade-off and implement the system current system engineering methodology lacks this
effectively. 7his paper presents a set of highly utilized communication mechanism from the customer to the
System Design Factors that system engineersor analysts whole development team.
should consider early in the design to produce an
effective system [HNH9]J, [HNH92J. The first objective of System Design Factors
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research is to provide one such communication follows: Section 2: System Design Factors Taxonomy U
mechanism. In general, a system engineer or a provides hierarchical view of SDF and provides
customer wants some form to specify what criteria the current direction and focus of the research. Section
end-result-system must meet. Depending on the 3: Example provides the touch and feel of SDF.
desired criteria, it affects how the system would be Section 4: Specification and Use of SDF provides the
designed and developed. These criteria are in turn utilization of the SDF template. Section 5: Current
the factors that the engineer must consider early in Status provides progress information; Section 6: I
order to avoid bad designs, reduce cost, and optimize Conclusion and Future Plans to provide on-going
productivity [HHN90aJ, [HHN90b]. research pursuit.

The second and third objectives are I
addressed by the following situation. Consider a 2 SYSTEM DESIGN FACTORS TAXONOMY
situation where two system engineers were assigned
to build a system independently given the same The current thrust of this research is to I
requirements and specifications from the same define and formulate the System Design Factors and
customer. When the two engineers delivered two their relationship. These factors are categorized.
systems to the customer, if the customer asks to The formulation of these factors expresses the
compare quantitatively and qualitatively the different relationship and behavior of closely and loosely
properties in term of performance, dependability, associate factors. The effect of the individual factors
security, and real-time responsiveness of these two on the design or engineering process is being studied.
systems, then how does this comparison proceed. The correlation of multiple factors is also undergoing
The second and third objectives of this research study. The rating, normalizing, and voting techniques
addressed this question. These objectives provide the for these factors are being derived. The research is
mechanism for quantifying design goals of large, expected to generate a robust SDF taxonomy. Each I
complex, real-time systems. With the current state of factor will consist of terminology, definition, source,
the system engineering technology, there are no metrics, example, usage, and notes.
normalized techniques to quantify and compare
systems. If the system's properties could be specified Currently there are eleven major groupings
quantitatively and qualitatively then its strengths and of factors that seem to be required for most large,
weaknesses can be identified and effective comparison complex, real-time systems. These groupings are
among different systems can be achieved. Being able arbitrary. Each of the groupings consists of factors I
to qualitatively measure the system will not only that are closely associated with other factors, which
benefit the system engineers for evaluation purposes, ultimately affect the factor's behavior by inheritance.
but it will also provide a benefit during the This hierarchical taxonomy will evolve as this research
requirements specification phase, capture phase, effort progresses. The Current SDF taxonomy is
analysis phase, design phase, optimization phase, and shown below in Figure 1 (without any detail
trade-off phase. description due to the space permitted) to

demonstrate the SDF framework. This taxonomy I
The proposed solution to these problems is provides a set System Design Factors that customers,

to formulate hierarchical System Design Factors system engineers, or analysts should consider early in
(SDF). The short term goal is to collect concepts and the design in order to produce an effective system I
ideas from government, industry, and academic [HNH9Il, [HNH92J, [HHN90a], [HNH90b].
sources to formulate a complete and robust system
specification. The individual factors will be studied 3 EXAMPLE
independently. The correlation of factors will be
investigated. Testings and applications will be made This section gives some small examples
to verify the correctness and consistency of the where SDF are used. Before this can begin, the
formulation. The long term goals are to refine the characteristics structure must first be introduced. In I
formulation, provide automation, and provide new order to effectively introduce the characteristics
system engineering mechanisms and concepts that will structure, some definitions are provided to give a
have significant impact into the next generation of common understanding.
system engineering methodology.

The remainder of this paper is organized as 3
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1 W 7.1.4 DEPTH

1.1 RESPONSE TIME 7.1.6 AREA

1.2 CAPABILITY 7.1.6 VOLUME

1.3 RELATIVE ACTIVITY 7.2 WEIGHT REQUIREMENTS

1.4 SPEED 7.3 RUGOA&MTY tRUGGEDIZEoI

1.6 THROUGHP•JT 7A SURVIVABI•JITY

1.6 LATENCY 7.5 (PHYSICALJ PORTABISJTY

1.7 LOAD BALANCING 7.6 ENERGY REOUIREIEN1S

1.7.1 INFORMATION LOAD 7.6.1 (ENERGY) CONSUMPTION

1.7.2 PROCESSING LOAD 7.6.1.1 ELECTRICAL (ENERGY CONS.JED1

t.8 GRACEFUL DEGRADABIUTY ILOAD SHEDDING 7.6.1.2 FUEL (ENERGY CONSUMED)

1.9 EFFICIENCY 7.6.13 OTHER (ENERGY CONSUMED)

1.10 PREDICTABIITY 7.6.2 (ENERGY) DISSIPATED

2 FAr.TIME 7,7 LOCATIONAL OPERATING ENVIRNMIENT

2.1 HARDNESS 7.7.1 GEOGRAPHICAL LOCATION

2.2 HARD DEADLINES 7.7.2 INDOOf"UTDOORS

2.2.0.1 PERIODIC 7.7.3 TEMPERATURE

2.2.0.2 AKERIODIC 7.7A HUMIOITY

2.2.0.3 SPORADIC 7.7.6 ACOUSIlCAL NOISE

2.3 SOFT DEADLINES 7.7.6 AIR PURITYOIUAUIT

2.3.0.1 PERIODIC 7.7.7 EXPOSIURE TO WIND

2.3.0.2 APERIODIC 7.7.8 EXPOSURE TO WATER

2.3.0.3 SPORADIC 7.7.0 EXPOSURE TO ELECTROMAGNETIC RADIATION

2.4 TEMPORAL DISTM4CE 7.7.10 VISRATIONSISTABIUTY
2.6 TARINIESS 7.8 CLIMATE CONTROL

2.6 NUMBER OF CONSECUTIVELY MISSED DEADLINES 7.8.1 COOLING

2.7 PREDICTASIUTIES 7.8.2 HEATING

2.8 GRACEFUL DEGRADATION 7.8.3 HUMIDITY CONTROL
x coMPrAfTff Na•Of~ cfasING #R,,F•,M•NTs 7.6.4 ACOUSTICAL NOISE SUPPRESSION

3.1 IMPORTANCE 7.8.6 AIR PURITYIOUALITY CONTROL

3.2 USEFULNESS 7.8.8 MOTION STABILIZATION

3.3 PRIORITY 7.0.7 LIGHTING

3.4 (COMPUTING) PORTABIUTY 7.0 MANUFACTURING CONSIDERATIONS
3.6 INTERRUPTKI•ESET CAPABILITIES 7..A PRODUCTION CAPACITY

4 DE•REASVIAR Y 7.8.2 PRODUCTION TIME

4.1 REUABIUTY 7.10 COMPUTER

4.2 ACCURACY 7.1.1 CMU

4.3 FAULT TOLERANCE 7.10.2 MEMORY

4.4 GRACEFUL DEGRAINUTY 7.10.3 STORAGE

4.6 REDUNDANCY 0 FINANCIAL AFOUIAENAFNTS

4.6.1 STATIC 8.1 COST TO DEVELOP

4.6.2 DYNAMIC 8,2 COST TO PROTOTYPE

4.6 AVAILABIUTY 0.3 COST TO PRODUCE

4.6.1 INHERENT AVAILABIUTY 8.4 COST TO TEST
4.6.2 ACHIEVED AVAJLABIUTY 0.5 COST TO PURCHASE
4.6.3 OPERATIONAL AVAILABILITY 8.6 COST TO OPERATE

4.8.4 EASE OF REPLACEMENT 8.7 COST TO MAINTAIN

4.6.5 CRASH RECOVERAWITY 6.9 COST TO REPAIR

4.8.0 COMPUTATION HEAVY PROCESS EFFECTS 8.9 COST TO INCLUDE SECURITY CAPABILITY

4.7 QUALITY 8.10 PRODUCTIVITY
a EPCURI7TY 9 TIME PROJECTED

5.1 CLASSIFICATION 9.1 ESTIMATED TIME TO DEVELOP

5.2 TYPE OF DATA 9.2 ESTIMATED TIME TO PROTOTYPE

5.2.1 LEVEL I (CLASSIFIED1 9.3 ESTIMATnED TIE TO PRODUCE
5.2.1.1 TOP SECRET OR ABOVE 0.4 ESTIMATED TIME TO TEST

6.2.1.2 SECRET 9.5 ESTIMATED TIME TO PURCHASE

6.2.1.3 CONFIDENTIAL 9.0 ESTIMATED TIME TO OPERATE
5,2.2 LEVEL II (SEINSITIVE) 0.7 ESTIMATED TIME TO MAINTAIN

5.2.2.1 PRIVACY ACTIFINANCIAL 8.8 ESTIMATED TIME TO REPAIR

6.2.2.2 FOR OFFICIAL USE ONLY 0.9 ESTIMATED TIME TO INCLUDE SECURITY CAPABILITY

6.2.2.3 SENSITIVE MANAGEMENT 10 LfE CYCLE
6.2.2.4 PROPRIETARYIfRIMLEGED 10.1 TESTABILITY

5.2.3 LEVEL III PIOMSENSITIV1E) 10.2 MAINTENANCE

5.2.3.1 IOTNER.-NOT CATEGORIES IN 10.2.1 EASE OF MAINTENANCE

LEVEL I AND II) 10.2.2 NUMBER OF PERSON NEED TO MAINTAIN

6.3 PERCENTAGE OF PROCESSING TIME ISECURITY LOAD 10.2.3 NOTIFICATION

6.4 ENCRYPTION TYPE REQUIREMENTS 10.2.4 FREQUENCY

6.5 IMPLEMENTAT1ON TECHNIQUES REDUIREMENTS 10.2.5 MAINTENANCE DOWNTIMNEIURATION

6 IfIANWARE 10.2.6 DEGREE OF SYSTEM DISABILITY

6.1 EASE OF UE 10.2.7 WHEN MAINTENANCE COMES DUE

6,2 POTENTIAL OPERATOR DECISiONS 10.2.8 DURING MAINTENANCE

6.3 1OPERATOR DELAY I 2.USER RESPONSE TIME 10.2.0 WEAR UFETIME

6.4 OPERATOR ACTION(S) 10.3 OBSOLErSCENCE UFETIME

6.5 1.REAGJIRED NUMBER OF OPERATORS I 2.NUMSER OF 10.4 REUSE-ABIUTY

SIMULTANEOUS USERS 11 FUT(UR IFEDS COASTIEA r/ONS

6.6 USER INTENSITY 11.1 ADAKTABIUTYIFLEXI8ILiTY

6.7 AVERAGE TPA4E FOR EACH CATEGORIE 11.2 EXPANDABIUTY

0.0 POTENTIAL ERRORS 11.3 COMPATIBILITY

7 PHYSICAL REOUIEMENTS 1IA INTERGRABIUTY

7.1 SIZE REQUIREMENTS 11.5 INTEROPERAIIUTY

7.1.1 HEIGHT 11.6 INTEGRITY

7.1.2 WIDTH

7,1.3 LENGTH

FIGURE 1. TAXONOMY OF SYSTEM DESIGN FACTORS

Quantitative Value is a quantifiable measurement. It is a cardinality. For example, temperature could be measured as 120.5
numerical value. It represents the degree of excellence. Some degree of Kelvin and could vary only between 0 and 277.15 degree.
value may have different type of range or minimum and maximum Attribute is the quality of a person or thing (non-physical)
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Property is the attribute which belongs to some one or some thing module, task, node, device, or any object. This I
(physical). characteristics structure provides a low level or
Characteristics is any special feature of a person or thing. detailed link to the criteria which in turn provides a

The hierarchical relationship among these high level link to the System Design Factors. In other
defiitiohs forms a characteristics structure which word, the characteristics structure applied to eagle to
pdeitions fogeersal mchanateistis strquaicatr hic. allows us to quantify and rate different aspects of its
provides a general mechanism for quantification. species. This similar approach can be applied to the
This mechanism is applied with the System Design system there by allows to quantify and rate differentI

Factors to quantify systems. An example is given to factors of the system. The application of the

demonstrate the relationship among these definitions. characteristics structure to the Syst ion of t

The example in Figure 2 shown hierarchically a is t sce t System Design Factors 3
Subject has Properties which have Attributes which i

in turn have Quantitative Value and Qualitative
Value (Characteristics). Consider an eagle who has 9 P An, .oou 0',n,.ovW.. Vl ,- V,. •

the following properties: Performance, Life-Cycle, O, 0 t""im I
and Physical Requirements. Performance which in ___ ___ _________________________

turn have the following attributes: Air Speed, Land God om., 1cdtod.V*lh"- odnf 04.n

Speed, and Take Off Time. Life Cycle which in turn v-- to ,.0 Fast

has the following attributes: Overall Sickness Time 2.1 t3•0 slo.

(health) and Life Span. Physical Requirements which I
in turn have the following attributes: Size, Color, and t-4w. I-_Th,,T- I-- st.o 10 i
Wing Span. Size which in turn has the followingI- II to 15 Fm

2- to 213 0 9owquantitative value (i.e.,could vary between 0.5 to 2.0 H 1.1 to 2.0 "*

feet) and qualitative value (characteristics) (i.e.,could| H 0.0 to 1.0 FANK

be small, medium, or large). The rest of the
quantitative and qualitative values are shown in S,.m,. I o-Reoy- 0. 1.0 Good

Fiur 2-.nxm. t 0.0 to 1.0 Bad
Object, mw. .- Fsjl-Td I 1.0 to 2.0 Mod.al.

2.0t 3.0 Good

S ubje t l Alt Attdb e uaut:ltatlw Value Oui fltaivqe Vi . o 0.0 to 10.0 Ligt
(Clea cte, .; mI-Weght - -- 11.1to20.0 me'S,..,

1010o0 Slow I- 20.1 to 30.0 Heavy

I- $d- I- 51 to 7 Modate I I
I - 7 to O 100 t j to o srrll

I-PIhy. Req. --Siz - 6- 51 to 100 Modu
1 itO6 Slow I -- 1011.150 Lto go

-Pat.- I-Lad Sprd- 6-- St. 10 M ade I

I - 1 .10'5 F4 I - 0.0 to 1.2 to
I I.-Pw. - 1.3 to 2.5 Moeot.

I--- 00 to 10.0 Fe a 2.8 to 3.0 PghI-1.e-OIt, I I-- 11.0to 20. M odet l

I- 21.0 to 130.0 slow
FIGURE 3. EXAMPLE OF SYSTEM DESIGN FACTORS

-" 01o 1 Goodi

I-Sd•T.as I.- 1 103 A.o... As illustrated in this example (Figure 3), a

cs .I-. I atoo 0 Po customer may need to rate, measure, or design the
00 to .o 0 So system in term of the following Properties:

I Aft Span I, 5.1 to 10.0 Meodiu
10A to1101 Lam Performance, Dependability [Joh85], [WaH91], and

Physical Requirements. Performance which in turn
0- 0t.o 00 2M has the following Attributes: Response Time,

I-nle-- I- 0.70 to 1.5 Medk

1.-02to 2. Lo. Throughput, and Latency. Dependability which in turn
Ie ,- to G & has the following Attributes: Reliability and Fault-

-, o1 . ,t Tolerance. Physical Requirements which in turn has
St.Sethe following Attributes: Weight, Size, and Power.I H 1 .0 , 0o t . 0 8h , 0 l

i.-WlIn pS- I'- 11.01o16.0 M"ea, The Response Time could vary between 0.0 to 3.0- .o10.0LongS and its characteristics could be fast, medium, or slow.
FIGURE 2. EXAMPLE OF CHARACiTRISTICS STRUCTURE The rest of the quantitative and qualitative values are

In the above example, the Subject was an shown in the graph. This mechanism allows one to i
eagle. However, the Subject can be substitute,.! with identify and effectively compare the strengths and
one of the following: system, subsystem, component, weaknesses of different systems.

I
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the reason that this factor applies to a specific
4 SPECIFICATION AND USE OF SDF component/object (e.g., Life Critical Function). The

Relationship Item is the slot holder for the list of
The example in Figure 3 shows the overall or closely associated factors (e.g., Availability, Fault

top level application of the SDF. The detail Tolerance). The Relational Expression field in this
application of SDF is demonstrated through The item provides the slot for the list of correlations
System Design Factors Template (Figure 4). The between this factor and its closely associate' factors
purpose of this template is to provide a general (e.g.,Positive correlation, Negative Correla:noi,,). The
format to guide the system engineer or the customer Quantification Item contains the Type and Formula
in the application of the System Design Factors. It fields. The Type field in this item is the slot holder
assists the engineer/customer to specify what for either integer, float, double, short, or long. The
goal/criteria he wanted to measure and allows the Formula field in this item currently provides the slot
template to be attached or probed onto a subsystem, for three mathematical expressions. They are (1)
a component, an object, or the whole system itself actually calculated (e.g., R(t) = 1 - F(t) ), (2)
just like in the previous examples. This provides the required to be a specific value (e.g., 0.989),and (3)
metrification mechanism to quantify the various budgeted by designer or customer (e.g., 1.01 * 0.989).
aspects of design. The Consistency Rule Item consists of By-

Aggregation, By-Type, By-Design Factors, By-View,
and By-Component rules. Foi example, By-

,. N-: A ,&a.1 ,• r Aggregation field provides a slot that holds the rule
2. Typ.: f.ot chuy3ý • oo4 o ,ot.1 for governing this factor consistency through out the
4. UrIis L**'.1 pmb~hiy
,. Mvt0,": Fo, * rhierarchy (e.g., Use Rule X and Rule Y). The
a- Rodond.: W. Crfkt Fw, Reference item is a slot holder for the source of
7. R,*4P Avefbbty. F..,t T•.W*e ....

.. R . p-,, c,,,i, P" . moov c.* ,-,-, reference or the name of the author that this factor
. ,., has been formulated by. The Definition item is a slot
m. Trype

Fe.,•." NO ,I - F,,) AW holder for the clarity for this factor. The Annotation
,.,• .01,.,,d Item is the slot holder for commenting relevant

a. Byg,.9,,• U",AA, X wd information or providing warnings related to this
!! ep, is he" ,.oit•t•,i.,,h, factor. Lastly, the Next Template item is not
, , ,, V. completely defined at this time, but it is the slot

b By Typ. holder for any detail specification that may notB. By W F-t-

: ,. s •, require the customer's direction.
*t Bly ,apwf

10. Ref.,w.w: Authms, &w.
11. D.fllw : T4t a..*

13 Next Tr4•*ht:

_______ ______ ____an DF2 WF 3dOIum

FIGURE 4. SYSTEM DESIGN FACTORS TEMPLATE Osi Faft

The initial template was formulated and an
example is given in Figure 4 to get the touch and feel
of the template. Currently, there are thirteen items in n > .,..:-

this template. The Name item is a slot holder for the osp,,P,,

name of a specific design factor (e.g., Reliability of
Beam Former). The Type item is a slot holder for
the classification of the factor (e.g., Probability).
The Range item is a slot holder for the minimum and
maximum value or the cardinality of the factor (e.g., FIGURE 6. DESIGN FACTORS DEPENDENCIES GRAPH

0.0 to 1.0). The Units item is a slot holder for the
unit of measurement of the factor (e.g., Units of The advantage of this template is not just to
Probability). The Methods/Principle item is a slot ease the use of the factors but it also allows the
holder for the approaches or techniques that the designer/customer to take the available factors and
designer/customer considered to be associated with customize his own design factors that are appropriate
this factor (e.g., Fault Tolerance, Highly Reliable for his specific needs. It is up to the
Component). The Rationale item is a slot holder for Engineer/customer to decide the important and
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unimportant factors and formulate the design goal paranirtr. the nginec cman tailor the stiogie cnteria U
and design decision that the end-result system mus or multi--ntcria obj-ctivc funcion fof optimuzation
meet. The overall design goal and design decision of [Na.F9. I
the system can be described by the System Design
Factors dependencies graph shown in Figure 5. This design is then optimizd based on the

The upper half of the graph is rcferred to as tailored objective function. The first approach that
the goal oriented design factors, while the lower half the engineer could take is to optnuze the desgn with
is referred to as the decision oriented design a single criteria objective function (,hown in Figure 6)
parameters. The goal oriented is independent of and then overlay the result (shown in Figure 7) to
implementation model while the decision oriented is clzcute trad.-,off analysis [Dosgll. The second
dependent on the implementation model. It would be approach is to optlmauz the design with multi-critrna
ideal for the design to be implementation objective function (shown in Figure 8), The first
independent in design phase, however in practice it is approach optmizcs the criteria one at a time. while
not always the case. SDF dependencies provide the the latcr approach oolpitmzs these criteria I
linkage between the implementation independent simultanvowly.
(Design Goal) and implementation dependent

(Design Parameter). The SDF dependencies graph
assists the engineer/customer in understanding the
behavior change of the individual factor. Thesec
changes are based on its' closely and loosely

associated factors. The behavior of each subsystem. L

component, object, or the whole system with respect I O
to different factors (design goals) can be anayzed
separately or simultaneously. [l

A,;" -

Pcii VS. AhWaft OWC VS. sL

ftt

' Ji -J • FtGUR 7. SINGLE CIRIAIRiA oe.6CTrVE rUJNCTION OV[RAY

o ap~yV&. Aloculn So140m VS. AftWo

FIGURE 6. SINGLE CRITERIA OJAECTIVE FUNCTION

Although the scope of this paper is not to
cover Design Structuring and Allocation Optimization ,. I
methodology, it is worth showing some applications of L' 3
SDF with such a method [HHN90a]. IHHN90b.,
[HNH91], [HNH921. Assume that a customer FIOUREU. A MULTI-CSRTRIA OBJCTIV• FUNCTION Iprocured a contract to develop a system such that theI

end-result system is required to meet certain
measurements in terms of Performance, T re-ults of single and multi-criteria
Dependability, Cost, and Security. As illustrated with objective function together with the SDF

!he previous template example, the engineer can denendencies graph provide the engineer with a I
specify and attach these required factors to the better understanding of the system under design. By

design. Based on th-, design goal and design understanding the physical nature or correlation
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I
among the factors, the designer/customer can predict effort is being considered to focus on a smaller but
the behavior and performs effective trade-off. The wvidely use set of design factors. From this smaller
applicatiov of the SDF with optimization here merely set of design factors, intensive correlation will be
demonstrates some utility of the SDF. SDF can be studied. The formulation will be incorporated into
applied through-out various phases of system the sonar example (Hoa91l and the Destination Level
engineering. It is a critical component in system I Prototype [HNH92], IHNH911 in other research
engineering, efforts for testing and refining.

The lessons learned in this effort will benefit
5 AMMARY OF CURRENT STATUS the whole systems engineering community. The list

is expected to evolve as this e'fort progresses. This is
A list of System Design Factors was a collaborative effort among Nu 'ai Surface Warfare

generated and structured in the taxonomy format. Center (NSWCDDWODET), DoD, other government
There are eleven main groupings of factors and their agencies, Industry, and University communities.
closely associated factors defined so far. The
relationship of these factors is not well understood at
the present time but we are attempting to correlate ACKNOWLEDGEMENT
these factors as this effort progresses. An initial

System Design Factors technical report is drafted. The authors would like to thank Ngocdung T.
This draft provides a detailed description of each Hoang, My-Hanh N. Trinh, Charles Whelan Jr., Eric
design factor. The description consists of the Ogata, Dong Choi, Michael Jenkins, Michael
terminology, definition, source, metrics, example, Edwards, Paul Walleaberger, Kate Murphy, Tamra
usage, and note. The terminology provides the Moore. Dr. Ed Cohen, Dr. William Fanf and Dr.
commonly used vocabulary word. The definition Harry Crisp of Naval Surface Warfare Center; Dr.
provides the meanings of the factor. The source Carl Schmiedekamp of Naval Air Warfare Center;
provides the reference of the definitions. The metrics Evan Lock of Computer Command and Control
[JuA91] provide the unit of measurement (dimension) Company; Nick Karangelen of T rident System
of the factor. The example provides some illustration Incorporated; Robert Goettge of Advance System
of the factor. The usage provides the cases when, Technology; Dr. Jane Liu and Dr. Kwei-Jay Lin of
where, how, and why to apply the factor. Lastly, the University of Illinois Urbana Champaign; Dr. Kishor
note provides any relevant information or warning Trivedi of Duke University; Geoffry Frank of
related to the factor. Initial SDF template and Research Triangle Institute; Dr. Insup Lee of
example were demonstrated to get the feel of the University of Pennsylvania; Dr. Osman Balci; Dr.
formulation. The prototyping of the SDF template James Arthur, and Dr. Richard Nance of Virginia
is underway. Initial System Design Factors focus Polytechnic Institute and State University and

group has been established to collaborate and to everyone involved in this effort.
clarify issues in the SDF formulation.

REFERENCE
6 CONCLUSION AND FUTURE PLAN
6 [BIF90] Blanchard and Fabrycky, Systems

The goal of this effort is to generate a list of En2ineerine and Analysis 1990
System Design Factors. These factors are intended to
be used throughout the whole system engineering [BoB85] Bowen, B. A. Brown, W. R., System DesiMg:
process. For instance, they are used to specify in the Volume It of System Desigm for Digital Sigial
requirements phase, encapsulate in the capturing Processing. Prentice-Haill, Inc., 1985
phase, quantify and evaluate in the analysis phase,
characterize in the optimization phase and, justify in [CYH91] Choi, D. Youngblood, J. Hwang, P.,
the design trade-off phase. These factors are critical 'Modeling Technology for Dynamic Systems', Proc.
to the system engineering process. 1991 Systems Evaluation and Assessment Technology

Workshop Aug 1991.
The Future Plans included refining,

restructuring and streamlining (if necessary) the [Dos911 Doskocil, D., "Modeling Techniques to
System Design Factors. More dedicated research Support Diagnostics System Trade-off ', Proc. 1991

153



I

Systems Evaluation and Assessment Technologv [NaF91] Mansour N., and Fox, G., "Physical i
Workshop. Aug 1991. Optimization Methods for Allocating Data to

Multicomputer Nodes', Proc. 1991 Systems Design
[EdH91] Edwards, M. and Howell, S.,'Requirements Synthesis Technology Workshop. Sep 1991.
Specification and Traceability (RESPECT): A
Requirements Methods for Large Complex Systems", [SvL761 Svobodova, and Liba, Computer
Proc. 1991 Systems Design Synthesis Technology Performance Measurement and Evaluation Methods:
Worksho02 Sep 1991. Analysis and Applications 1976

[HNH92] How~l, S. Nguyen, C. Hwang, P., 'Design [WaH91] Wallenberger, P. and Howell, S., 'Real-
Structuring and Allocation Optimization Time Dependable Systems Design*, Proc. 1991
(DeStinAtiOn): A Front-end Methodology for Systems Design Synthesis Technologv Workshop Sep
Prototyping Large, Complex, Real-Time Systems", 1991.
Proc. Hawaii International Conference on System
Sciences IEEE Computer Society Press, Los
Alamistos, CA, Jan 1992, Vol. II, pp 517-528.

[HNH91] Howell, S. Nguyen, C. Hwang, P., 'System
Design Structuring and Allocation Optimization
(DeStinAtiOn) ", Proc. 1991 Systems Design Synthesis
Technology Workshop. Sep 1991.

[HHN9Oa] Howell, S. Hwang, P. Nguyen, C., 'Expert
Design Advisor." Proc. 5th Jerusalem Conference on
Information Technology (JCIT. IEEE Computer
Society Press, Los Alamistos, CA, Oct 1990, pp 743-
756.

[HHN9Gb] Howell, S. Hwang, P. Nguyen, C., "Expert
Design Advisor." Naval Surface Warfare Center
Technical Report, TR-90-46, Oct 1990.

[Hoa9 11 Hoang, ND. T., 'Essential Views of Systems
Development ", Proc. 1991 Systems Design Synthesis 3
Technology Workshop. Sep 1991.

[JeY91] Jenkins, M. and Yeh, C., "An Approach to
Design of Processor Networks Based On Massively
Interconnected Models", Proc. 1991 Systems Design
Synthesis Technologv Workshop, Sep 1991. 1
[Joh85] B. W. Johnson, DesiIn and Analysis of Fault
Tolerant Digital Systems, Addison-Wesley Publishing
Company, 1985. 3
[JuA91] Juttelsatd, D. and Arnold, C., T'he Next
Generation Computer Resources (NGCR) Operating
System Metrics Project", Proc. 1991 System__s s
Evaluation and Assessment Technology Workshop,
Aug 1991.

[Kam9l] Kamat, V., 'Computer System Evaluation:
Paths and Pitfalls*, Proc. 1991 System s Evaluation
and Assessment Technology Workshop, Aug 1991. 3

154 3



I
I

achievement of properties like security very
A Method for the Assessment of System difficult, and to make maintenance

Designs expensive. For example, the COCOMO
John Litke costing model provides cost multipliers that

m help determine the cost of a software system
Grumman Corporate Research Center MS. [1]. Figure I shows the ratio of the maximum

A08-35 to the minimum of each cost driver

Bethpage, New York 11714-3580 multiplier to illustrate how sensitive the total
cost function is to a reduction in the value of
a cost driver. Complexity is the cost driver

Maturing software CASE tools and more with the most leverage. That is, a
defined software processes now provide the proportionate reduction in the system
foundation for changing software production complexity affects the system cost more than
from an art into an engineering discipline, a proportionate reduction in any other cost
An essential next step is to provide objective driver. Complexity reduction has even more
means to assess the intrinsic qualities of economic leverage than the use of modern
software. In particular, intrinsic properties software practices or software development
like complexity have been shown to tools!
dominate the development and maintenance In addition to cost, complexity has adversecost drivers. This paper reports on a method effects on many system properties such as
to objectively assess software qualities security, safety, and fault tolerance. These
related to complexity, including modularity, attributes need high assurance, and
cohesion, maintainability, etc. The new unnecessary complexity in the systemmethods are described and successful makes such assurance either very costly or
application to large DoD software systems impossible to obtain. Further, the life cycle
reviewed. The technique should be cost of software is critically affected by ourextendable to assess specific structural ability to easily maintain and modify
properties of software related to security, software, and many studies have shown thatS safety, and reliability. overly complex systems have an inordinate

maintenance cost [2,3].

Introdion Despite the advantages of reducing software
complexity, no system can be arbitrarily

System design assessment can have many simple: requirements impose a minimal
goals, of which the most common are risk complexity upon any solution. Instead, we
assessment or requirements verification, intend to manage and control complexity
One reason assessment activity is required growth and, if possible, to reduce inessential
is that software as-built is almost never complexity in software systems.
compliant with the program intent. One
important cause of non-compliance in To do this, we are developing an objective
software systems is that software is usually software assessment technique to
more complex than necessary and this characterize software complexity, focusi .
unnecessary complexity increases risk and on those complexity issues that most likely
raises the development, verification, and affect life cycle cost by affecting software
validation costs. modularity, reusability, maintainability,

etc. We have begun by assessing software
The adverse effect of complexity on the implementations for complexity properties,
software life cycle cost is not just intuitive, but we believe that our technique can be
there is documented evidence of its effect. In extended to assess the complexity of software
particular, it is known to be a dominant cost designs and maybe even the complexity of
driver for both the development and software requirements.
maintenance phases, to increase the cost of
test and inti-gra.ion, to make the
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advantage that it looks for high level
By itself, this goal is not sufficient. To characteristics, assessing large scale,
ensure that the assessment technique is system level attributes that more traditional, I
useful, we have: detail-oriented assessments miss. On the

* Used it to determine the complexity other hand, pattern analysis as an approach

in software produced by good is often confused by small variations and

practice, either fails to recognize good patterns, or
identifies good patterns with slight

* Developed techniques that reduce variations as bad. This sensitivity to false
complexity in reasonable instances identifications is well known and is one of
and proved those techniques work, our more significant challenges.

* Assessed the benefits of the entire The potential applicability of pattern
process. analysis for software complexity

assessment is relatively easy to describe,
Although our initial results reported here are even as the real utility if less obvious. For
preliminary, we believe there is sufficient example, it is commonly accepted that well-
promise that we have committed to the engineered software is modular, hides
construction of a second generation information within modules, and
assessment technology, minimizes the complexity of inter-module
Technical h couplings. These characteristics, accepted

since the 1960's, are the foundation of the
Our approach to assessing software work of authors such as Myers and Parnas.
complexity is to apply pattern analysis One difficulty with the concepts is that they
technology to software systems. We believe are relative and descriptive, rather than
that as software systems are made more absolute and prescriptive. Although they
regular (less complex), their design suggest that modules should be more tightly
integrity improves and the life cycle cost coupled to their internal elements than to
should decrease. Generally, pattern external elements, the definition of "more"
analysis as a conceptual approach has the $
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or the specification of how much external
coupling is acceptable is answerable only in At the next level of analysis, we would
the context of specific software instances, identify the minor organization structures
Nevertheless, a knowledgeable software (e.g., work groups within departments) and
engineer can sometimes examine the their relationship to each other. The minor
modularity properties of a program and structures often do not respect formal
quickly assess whether or not it is acceptable, organizational boundaries but representeven though determining specific teams of organizationally dispersed
modification suggestions may be much more workers that cooperate extensively. In thetime consuming. Making such an same way, we can identify programtimeconumin. Mkingsuc an elements (e.g., functions, subprograms,
assessment process more objective is one elmns (e g.,)functos, subpr ramsgoal of our pattern analysis technique, tasks in Ada) and ask how they cooperate

within the program to achieve specific tasks.
Consider a program as a complex network of At a still higher level, an organization's

relationships such as data references, At ellmhigher man or rking
control references, semantic dependencies minor elements form major working
(e.g., types), exception propagations, etc. If groups. These larger groups characterize the
the program was constructed with definite real organizational points of control and
methods, we should expect that the methods or critical workgroups. In the same way, the
their goals are evidenced in the final smaller elements of a program form
product. In particular, because most subsystems or abstractions that characterize
software engineering methods emphasize the larger compositional structure of the
the control of relationships (e.g., interfaces, program.
data references), an analysis of This process of identifying smaller
relationships should reveal the effect of the structures and grouping them into larger
software design and construction structures in a recursive manner may be
disciplines. However, the analysis of repeated many times, from different points
relationships is challenging because of view, to properly characterize a software
appropriate relationships are not regular system or an organization. For example, if
constructs like bricks. If they were regular, we analyzed the organizational flow of
the detection of inappropriate patterns would forms, or of capital authorizations, or of
be as easy as detecting the irregularities in a proposal writing, or of the coordination of
brick wall. Instead, the net effect of the social gatherings, we might obtain very
many indirect couplings between parts of an different pictures. Similarly, we expect that
software system provide a much more the analysis of data references, type
complex picture that is difficult to references, calling references, exception
understand. processing, etc. will reveal different

The complex network of interconnections structures in a software system.

within a program defines the graph to be Organizations, like software, are not
analyzed. We will use the analogy of perfect; they do not operate exactly as they
analyzing a business organization for were designed to do. Therefore, we should
comparison. The usual first step is to focus expect to find work groups of all sizes that
on the small details of the organization, the differ significantly from the formal
specific work rules, time card practices, organization chart. When this is so, it is
personnel policy, etc. Although such essential to determine whether or not the
information can characterize the spirit and organization (or the software system) should
general tone of an organization, it does be reorganized to better match the work
relatively little to clarify its organizational processes. Conversely, we might also find
structure. By analogy, analyzing software that work relationships contain long chains
for density of comments, use of risky of essentially non-functional relationships.
constructs, etc. gives only a limited and These are obvious candidates for
sometimes misleading picture of the overall simplification in both software systems and
system. organizations.
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In brief, our analysis approach examines the approaches use fractions of local or global

patterns of relationships within a software averages of the metric to define coupling.
Sa Finally, algorithm s can be divisive or I

system to discover the naturally cohesive agglomerative. Divisive methods tend to be
elements within it. We do this by assuming computationally expensive, but are more
that a collection of modules can be usefully able to discover imperfect clusters.
described as a cohesive group if its members Agglomerative methods, on the other hand,
more complexly relate to other group are usually inexpensive and identify small

members than they relate to the rest of the structures more readily, but they can also be
system. From another perspective, a easily mislead by the presence of incidental I
cohesive group is perceived by a relatively couplings or unusual structures
low complexity boundary between it and the
rest of the system. Our approach does not Our initial attempt used an agglomerative
criticize a grouping by labeling it an method using data and call references. and
inappropriate solution to the design problem, an absolute coupling criterion. From this
but rather it identifies unusual complexity in experience, and using TablP 1 as a table of
a solution. In this sense, our approach expectations (not results), we chose one I
criticizes not the system design itself, but agglomerative method and one divisive
rather the workmanship of decomposing the method for additional evaluation as
design into elements. suggested in Table 2. As complexity isidentified, we also will explore methods thatThe utility of this approach depends upon the help reduce or control complexity as

efficacy of cluster analysis algorithms, summarized in Table 2. a

Cluster analysis performance depends upon I
our choice of measures, metrics for coupling Complexity Identification
strength, and upon our computational
approach. A summary of some The method of decoupled groups identifies

considerations for algorithm design is in groups of program elements that are
Table 1. (More information on cluster decoupled by a specified criteria, such as
analysis can be found in reviews such as data coupling, using an bottom-up,
[12].) agglomerative clustering technique. We I

began with an absolute measure of coupling,
The table lists properties (such as a measure) e.g., any software module that references
and typical examples for the software data declared in another module is coupled to
analysis problem, e.g., data references. the module that contains the data. This
Then it suggests a probable strength of this approach is related to the ideas of Parnas and
measure and a probable weakness. For data Myers. Although the technique did, in fact,
references, we expect that they should be well provide useful insight, we also found that it I
controlled by traditional design methods was too "ideal" an approach and often
and that therefore patterns defined by data provided unreasonable criticism of
references should not conflict with the reasonable software structures. Because 3
design. A potential weakness of this many programs appear to have clusters of
measure is that, if all methods do succeed in modules that relatively intensively
controlling coupling by dats references, then reference each other's visible data, only one
the violations to be revealed will be few and reference from one cluster to another ties
the insight gained slight. The coupling both clusters ýogether. In this way, many
strength criterion property describes the otherwise reasonably structured programs
method for defining coupling to be present. appear to be totally coupled, whereas the f
The simplest approach is to define a metric removal of only 6-8 isolated data references
on a specified measure and then to say that would reveal a more reasonable
any coupling stronger than a specific metric modularization of 8-10 sub-systems.
value is considered coupled. More adaptive However, the approach is helpful for

I
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Property Example Strength Weakness

Measure Data references Often corresponds Programs are often well
to method goals designed

Calls Reflects functional Extensive coupling to
decompositions primitives

Types May reflect design Unexplored
abstractions May be uncontrolled

Withs Includes previous Insufficient for corrective
three measures action

Exceptions Reliability Unexplored
emphasis

Coupling Absolute Cheap, easy Too sensitive
Strength
Criterion

Local average Adapts to sub- False alarms
system structures Splintering

Global average Adaptable Poor for inhomogeneous
systems

Algorithm Top-down, divisive Can reveal high Often computationally
level structures costly
more reliably

Bottom-up, Often Very sensitive to measure
agglomerative computationally choice

inexpensive

More likely to
reveal small
reusable modules

Table 1: Properties of Cluster Analysis Algorithms
group and thereby less complexly related to

security and safety analyses where rigid the rest of the system. Instead of looking for
criteria are necessary to provide high sub-systems with little or no coupling to other
assurance. Our second generation sub-systems, we look for graph partitions
technology will use all five measures in with maximal internal cohesion or

Table 1 to more fully explore the potential of integrity. This difference is an essential

this approach. We will explore the use of a int .

coupling strength criterion that uses the point.

average coupling of the group gathered so Previous researchers, including ourselves,
far. From experience in other venues [91, looked for sub-systems that were coupled to
this method works well when there are clear the rest of the system by a specific strength or
and easily discriminable clusters in the less, that is, the focus is on the relative pair-
relationships. wise coupling strength. We now believe that

it is as important to use inverse logic -- look
A complementary approach identifies sub- for sub-systems that are inherently more
systems within the larger system that are coupled to themselves than to the rest of the
locally more coupled or cohesive within the system. This is a much harder but, we
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Goal Method Strength Weakness i
Complexity Decoupled groups Corresponds to Few programs are good enough
Identification method goals i

Maximally Works on any May not map easily to design
coupled groups program or method goals

Algorithms are difficult

Complexity Isolated Cheap, easy, May not provide essential
Reduction Corrections effective simplification

Sets of changes Supports Algorithms are difficult
cost/benefit

I analyses j
Table 2: Pattern Analysis Methods for Managing Complexity

methods, such as Halstead and McCabe,
believe, a more promising technique. We provide statistical characterizations, but
have designed a top-down, divisive method little help for modification or repair
that uses local average coupling strength strategies.
and any of the five measures of coupling
from Table 1. This method tries to find the Our approach instead builds upon the module I
lowest complexity boundaries with respect to level definition of complexity such as that
the complexity of the groups formed thus far, pioneered by Parnas and Myers. It is our
rather than with respect to a context- goal to use this sense of inter-module
insensitive definition of low complexity. It complexity to characterize whole systems so
will use variations of the Kernighan and we can identify locally complex subsystems
Lin [101 clustering methods. within that whole that should be examined

more closely. Yau, Belady, and Card
Complexity Reduction provide early examples of applications of

The other two methods in Table 2 are the this concept which we have extended and

complexity reducing analyses to identify modified to be practical for large Ada

couplings that can easily be modified or systems.

removed in an attempt to reduce complexity. To do these analyses requires an extensive
This requires specific information about automated analysis capabilities to collect the I
Ada language structures, and one information from large Ada programs, trace

illustrative result will be described later. the desired relationships, and identify the
However, once these methods remove the complexity relationships of interests.
clutter, there remains some essential Figure 2 illustrates the architecture of our
complexity that may take much more effort to second generation analysis technology
remove. We have some proposed algorithms (known as ADAPT) now under
to suggest sets of changes and guide decision development.
making. These algorithms will be
implemented and tested in our second We ensure that the ADAPT analysis system
generation analysis tool set. will analyze large Ada codes by using a I

Diana-based tool from the STARS program
Our approach is unique, but not novel (Table for semantic analysis of the full Ada
3). It is related to methods described in the language. This tool extracts the relevant

literature for some time, but no one, to our information and stores it in a relational I
knowledge, has developed a broadly database. Many simple questions can be
applicable, high level analysis technique. answered by relational queries, but the

The traditional statement level, detailed structural, pattern related questions require I
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further analysis. We found that exception other relationships, but otherwise the
raising and propagating relationships technology is similar.
require more complex infrastructure than

Mediod Level Approach Strength Weakness

Grumman Pattern System Multiple Adaptive Less mature
Analysis

Design Stability (Yau System Modifiability Sub-system Single attribute
[4]) focus

Data Binding (Belady System Maintainability
[51)

Design Complexity System Design Assessment
(Card [6])

Information Hiding Module Complexity Control Well Local evaluations
(Parnas [71) understood

Coupling (Myers [8]) Module Understandability

Adamat/Logiscope Detail Multiple Statistical Mgmt. Tool Limited
Characterizations applications

McCabe/Halstead Detail Statistical Code Context
I I Characterization Sensitive insensitive

Table 3: Comparison of Complexity Characterization Methods
suggests that the exception handling logicWhen we analyze soft ware, we produce not might not be fully developed.The complete

only insights into the general complexity of result of a typical analysis is about 100 pages

the software and information on what groups of information. Although, for research

are coupled to others, but the analysis also os wefusually Alyze a sesee
provdesmanyhelful istngs s aby- purposes, we usually analyze a system to see

provides many helpful listings as a by- whatever can be seen, we recognize that a
product, such as variables that can be real user would have specific applications in

constants, unnecessary with statements, etc. mind and would require a much more

For example, the analysis of the exception focused analysis. Examples of such role

handling methods of one 20,000 line system differences are illustrated in Table 5.

provided detailed tables of information, of

which Table 4 is an extract. The capability To address these different roles, we have
for a full static trace of exception taken care that all grouping algorithms
propagations will be available in our new retain the linkages from the low level details
technology, but even limited statistics like that caused the groupings to the high level
this can be helpful. For example, this groups that result. This permits us to support
program has 69 when others, which seems the more detailed requirements of the
rather high. Further, four of its others verifier or maintainer that need specific
handlers are null, as are 18 of the named information on cause and effect.
exception handlers. This information
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Athribute Count Raise Stints Specific
Handlers

Pre-defined exceptions explicitly raised 2 4 63

User-defined exceptions raised 2145

User exceptions defined but not used 1 I I I

Table 4: Example of exception information

User Role Possi'ble Goal Application

Program Office Software Architecture Risk Assessment
Assessment Reuse Potential

Engineering Management Design Evaluation Complexity

Modularity

Maintainability

Verifier Property Certification Security

Safety

Fault Tolerance

Maintainer Re-engineering Analysis Cost/Benefit Evaluation

Identification of sub-systems

Table 5: Potential Applications

HBIsut functional abstractions. Although we saw

significant differences in the
A sample of the Ada software analyses we interconnection patterns, there were also
have done so far is in Table 6. significant similarities. This suggests that

some pattern analysis techniques are
In all cases, we found that the patterns that insensitive to the particular design and
were perceivable by the data references development paradigm.
criteria, bottom-up, decoupled grouping
method were generally congruent with the In five of these eight examples, we presented
software designer's intent. On the other our analysis results to representatives of the
hand, we found many examples in reputedly original implementation team. These
well constructed code where pervasive inter- conversations confirmed that the insights
module coupling was apparently provided by the techniques are useful to the
inadvertently introduced during the developers and suggested many ideas for
software construction process. Deciding potentially useful patterns. Note that our
which couplings could be most profitably technology does not produce patterns or
removed was not easily accomplished with structures, but instead reveals structures
our first generation tool. created during software design and

development. In one example, the user was
Some code systems (e.g., CAIS) were interested in assessing the reuse potential of
specifically designed with object-oriented a software system. Our pattern analysis
paradigms, while others were designed with technique suggested many places where
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extensive data coupling made reuse
difficult. It is significant that the user did Another frequent observation was

not say "Find all places where data coupling unnecessary complexity in many large

is a problem," but rather the analysis software systems that were developed under

technique directed attention to this system alleged rigorous methods and 2167A

aspect. documentation requirements. For exdmple,
Figure 3 is a graph of with relationships in a

In another example, several related code 45,000 line program. In this example, many

systems were re-engineered to increase the with relationships have the pattern
number of shared modules. We applied our illustrated in Figure 4. Here, A withs B and
analysis technology to before and after C, and B also withs C. In some cases, A's
versions of the re-engineered software. direct reference to C is a violation of the
Although the number of common modules in abstraction provided by B, and in other cases
the re-engineered systems increased by it is not. However, Ada's rename sstatement
about 65%, our analysis also showed that the permits an easy graph simplification that
number of inter-module references (with removes the direct rei"rnce from A to C, and
statements) increased by 153%. This instead presents tb; C interface within the I
suggested (for this particular experiment) specification of B. This simple change
that the benefits of increased commonality transforms Figure 3 into Figure 5. This does
were offset by a significant increase in the not imply that it is always wise to accept all
code system complexity. Although our these transform suggestions, but the I
technique cannot decide whether this is a magnitude of the potential simplification
favorable or unfavorable result, it can reveal warrants serious attention to the
the unintended effects of the re-engineering suggestions. I
effort.

Name Type Lines of Code

GIFRS Simulation 19,100 5
TASKIT Simulation 50,700

SGML Text Processing 5,400

ADAPT Program Analysis 45,100

Navy Code Message Handling. 31,700

CAIS File System Interface 359,80 £
DIANA Language Translation 38,200

SPC Code Compilers 63,500

Table 6: Analysis Examples I
As an unanticipated by-product of our include variables that can be constants,
Aanalysis ntoolsated by-produ of such variables that should be moved to another

, we f severa such package, useless with statements, etc. As
simplifying transforms that are very helpful part of our complexity reducing algorithms
to remove some of the more careless for the second generation analysis
complexity raising dependencies. These technology, we will be exploring algorithms 5
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orderly hierarchical cali graphs. In
of a 35,000 line subset of a large military contrast, Figure 7 shows the inter-package
command and control system. type reference graph of the same program. It

Typically, if we see a reasonably organized is much less regular, and more complex. It

call graph such as this, the inter-package also has many more packages in it, because

data reference graph also is relatively many packages contain types but no call

orderly. This is not surprising, because references. This result is true for all

most detailed design methods emphasize programs we analyzed so far: that the type

reduced data coupling between modules and reference graph graph is much more

some form of successive refinement of complex than the data or call reference

designs that tends to produce relatively graphs. The only exceptions are a few

Fi. 6.P.c.age.to..ac.age.Cal..Graph

Yj\

S) ! /

\ /\\\ /

essential. However, these initial
programs whose call and data reference observations suggest that, while modern
graphs are unusually complex and the type methods can control the complexity of data
reference graph is equally so, suggesting and call references, they provide much less
poor design or implementation problems. control of the type definition and reference

We can not yet suggest movement of type structure complexity.

definitions from package to package to
determine how much of this additional
complexity is superficial and what is
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modifications toward what ought to be.
Although the technique's true strengths and

In summary, we believe we have developed weaknesses are still unknown, we are
an innovative technique to assess the convinced that there are many effective
complexity of large software systems and to applications for managing complexity
help reduce or manage that complexity. The growth or reducing the complexity in

pattern analysis technique not only helps software systems.
identify what is, but also can help guide

£

Fig. 7 Package to Package Type Reference Graph

Our ocu fo nowwil reain n asesing evaluating the relative efficacy of proposed

the quality of systems and helping guide softwaren thevrelopetiv cmpeityhods thei

complexity reducing efforts. However, we coparingtsThis appliative compldext of tajor

expect that more advanced applications of the stprtowaducs Thsngpineeriong coulad beamajroe
technique should permit us to predict the stepftward poengiees. e ndipoe

probable complexity of solutions while still sotaepcse.

in the design stage. This should help us Acknowledgrements
estimate the life cycle cost of software and Teetniesfwr ol eurdt
should be a major step toward managing the spotthis rxensiesotarc wee deosrqigned tond
life cycle cost of software, -. ,her than just costuppote byi Petearc weren dsinan and UnFuo
trying to control it. Even more attractive, but tonstrumman Dat Syste ms Brena chdnoFuoof
at the horizon for now, is the potential for
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Methodology for Validating Software Metrics

Norman F. Schneidewind
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Abstract Monterey, CA 93943

We propose a comprehensive metrics validation methodology that has
six validity criteria, which support the quality functions assessment,
control and prediction, where quality functions are activities conducted
by software organizations for the purpose of achieving project quality
goals. Six criteria are defined and illustrated: association,
consistency, discriminative power, tracking, predictability and
repeatability. We show that non-parametric statistical methods like
contingency tables play an important role in evaluating metrics against
the validity criteria. Examples emphasizing the discriminative power
validity criterion are presented. A metrics validation process is
defined that integ::ates quality factors, metrics and quality functions.

Index Terms: metrics validation methodology, metrics validation process,
non-parametric statistical methods, quality functions, validity
criteria.

INTRODUCTION

We believe that software metrics should be treated as part of an
engineering discipline: metrics should be evaluated (validated) to
determine whether they measure what they purport to measure prior to
using the metrics. Furthermore, if metrics are to be of greatest
utility, the validation should be performed in terms of the quality
functions (quality assessment, control and prediction) that the metrics
are to support.

We propose and illustrate a validation methodology whose adoption, ,e

believe, would provide a rational basis for using metrics. This is a
comprehensive metrics methodology that builds on the work of others.
These have been validation analyses performed on specific metrics or
metric systems for the purpose of satisfying specific research goals.
Among these validations are the following: 1) function points as a
predictor of work hours across different development sites and sets of
data [1]; 2) reliability of metrics data reported by programmers [3]; 3)
Halstead operator count for Pascal programs [10]; 4) metric-based
classification trees [16); 5) evaluation of metrics against syntactic
complexity properties [173.

Our approach to validation has zhe following characteristics: 1) The
methodology is general and not specific to particular metrics or
research objectives. 2) It is developed from the point of view of the
metric user (rather than the researcher), who has requirements for
assessing, controlling and predicting quality. To illustrate the
difference in viewpoint, we can make an analogy with the automobile
industry: the manufacturer has an interest in brake lining thickness, as
it relates to stopping distance, but from the driver's perspective, the
only meaningful metric is stopping distance! 3) It consists of six
mathematically defined criteria, each of which is keyed to a quality
function, so the user of metrics can understand how a characteristic of
a metric, as revealed by validation tests, can be applied to measure
software quality. 4) The six criteria are: association, consistency,
discriminative power, tracking, predictability and repeatability. 5) It
recognizes that a given metric can have multiple uses (e.g., assess,
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control and predict quality) and that a given metric can be valid for
one use and invalid for another use. 6) It defines a metrics validation
process that integrates quality factors, metrics and functions.

The paper is organized as follows: First, a framework is established £
which pulls together the concepts and definitions of quality factor,
quality metric, validated metric, quality function, validity c±iteria,
and a metrics validation process. These concepts and definitions are a
integrated by the use of a metrics validation process chart. In this
section we show how validity criteria support quality functions. Next,
we indicate why non-parametric statistical methods are applicable to and
compatible with the validity criteria. This is followed by an example of
metrics validation, using the discriminative power validity criterion.
Lastly, some comments are made about future research directions.

FRAMEWORK

The framework of our metrics methodology consists of the following
elements, which are keyed to Figure 1: quality factor, quality metric,
validated metric, quality functions, validity criteria, and metrics
validation process. In Figure 1, we use the notation [Project, Time,
Measurement] to designate the project, time (e.g., life cycle phase) and 3
type of measurement (quality factor, quality metric). We use V to
designate the project in which a metric is validated and A to designate
the project in which the metric is applied.

This diagram is interpreted as follows: I
o The events and time progression of the validation project are

depicted by the top horizontal line and arrow. This time line
consists of Project I with metric M collection in Phase Tl (step 1);
factor F collection in Phase T2 (step 2); and validation of M with
respect to F in Phase T2 (step 3).

o The events and time progression of the application project are i

depicted by the bottom horizontal line and arrow. This project is
later in chronological time than the validation project but has the
same phases T1 and T2. This time line consists of Project 2 with
metric collection M' in Phase T1 (step 4); application of M' to
assess, control, and predict quality in Phase T1 (step 5); collection
of factor F' in Phase T2 (step 6); and revalidation of M and M' with
respect to F and F' in Phase T2 (step 7).

o Metric M' is the same metric as M but, in general, it has different
values since it is collected in a different project. The same
statement applies to F' and F.

Each element is defined and described in greater detail in the
following sections.

Quality Factor .

A quality factor F (hereafter referred to as "factor" or "F") is an
attribute of software that contributes to its quality [13), where
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software quality is defined as the degree to which software possesses a
desired combination of attributes (141. For example, reliability (an
attribute that contributes to quality) is a factor. A factor can have
values, such as the error counts F.ý,...,F, in a set of software
components (i.e. , an element of a software system, such as module, unit,
data or document [ 131 . We define F to be a type of metric that provides
a direct measure of software quality [6). This means that F is an
intrinsic indicator of quality as perceived by the user, such as errors
in the software that result in failures during operation. We denote F as
the f actor in V and F I as the f actor in A. F and F I are shown as
collected at point 2 and at point 6, respectively, in Figure 1.

Quality Metric

A quality metric M (hereafter called "metric" or "M") is a funct.-Lon
(e.g., cyclomatic complexity M = e - n + 2p) whose inputs are software
data (elementary software measurements, such as number of edges e and
number of nodes n in a directed graph) and whose output is a single
numerical value M that can be interpreted as the degree to which
software possesses a given attribute (cyclomatic complexity) that may
affect its quality (e.g., reliability) [151. For example, if there are
two components 1 and 2 with M,_ = 3 and M,, = 10,'this may indicate that
the reliability of 1 may be greater than the reliability of 2. Whether
this is the case depends upon whether M is a valid metric (see below).
We define M to be an indirect measure of software quality [2,61. This
means that M may be used as a substitute for F, when F is not available,
as is the case during the design phase. M is shown as collected at point
1 in Figure 1.

It is important to recognize that, in general, there can be a many-
to-many relationship between F and M. For expository purposes we limit
our examples to one-to-one or one (F) to many (M) relationships.

Validated Metric

A validated metric is one whose values have been shown to be
statistically associated with corresponding factor values (e.g., M:,,
... ,M,,, have been statistically associated with F .. .... F. for a set of
sof tware components 1, . . . , n) [ 13 1. A validation test of M with respect
to F is shown at point 3 in Figure 1. We denote M' as a validated
metric. Since M is validated with respect to F, it is necessarily the
case that F is valid. Therefore we say that F is valid by definition, as
a result of wide acceptance or historical usage (e.g., error count).

Since F is a direct measure of quality, it is preferred to M whenever
it is possible to measure F sufficiently early in the life cycle to
permit quality to be assessed, controlled and precicted (see below) .
However, since this is usually not the case, the need for validation
arises. We also note that since the cost of finding and correcting
errors grows rapidly with the life cycie, it is advantageous to have
approximate early (leading) indicators of software quality.
(Analogously, one could posit that the Dow Jones stock price average W
is an approximate leading indicator of Gross National Product (F) in the
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American economy and conduct a validation test between the two). Thus,
we can formulate the following policy with respect to software
measurement: When it is feasible to measure and apply F, use it;
otherwise, attempt to validate M with respect to F and, if successful,
use M'.

Quality Functions

Quality functions are activities conducted by software organizations
for the purpose of achieving project quality goals. Both product and
process goals are included. The quality functions that are pertinent to
this metrics methodology are: assessment, control and prediction.

Quality Assessment

Quality assessment is the evaluation of the relative quality of
software components. "Relative quality" is the quality of a given
component compared with the quality of other components in the set
(e.g., if M' is cyclomatic complexity, the quality of component 1, with
M' = 3, may be better than the quality of component 2, with M' = 10).
Validated metrics are used to make a relative comparison of the quality
of software components. The purpose of assessment is to provide software
managers with a rational basis for assigning priorities for quality
improvement and for allocating personnel and computer resources to
quality assurance functions. For example, priorities and resources would
be assigned on the basis of relative values (or ranks) of M' (i.e., the
most resources would be assigned to the components with the highest
(lowest) values (or ranks) of M'). M' is shown collected at point 4 in
Figure 1 and used for assessment at point 5.

Quality Control

Quality control is the evaluation of software components against
predetermined critical values of metrics (i.e., value of M' which is
used to identify software which has unacceptable quality [13]) and the
identification of components that fall outside quality limits. We denote
M', as the critical value of M'. Validated metrics are used to identify
components with unacceptable quality. The purpose of control is to allow
software managers to identify software that has unacceptable quality
sufficiently early in the development process to take corrective action.
For example, M'I = 3 would be used as a critical value of cyclomatic
complexity to discriminate between components that contain errors and
those that do not.

Control also involves the tracking of the quality of a component over
its life cycle. For example, if M' is cyclomatic complexity, an increase
from 3 to 10, as the result of a design change, would be used to
indicate possible degradation in quality. M' is shown as collected at
point 4 in Figure 1 and used for control at point 5.

Quality Prediction

Quality prediction is a forecast of the value of F at time T2 based
on the values of M'., M' 2 , ... ,M', for components 1, 2, ... ,n at time
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TI, where "time" could be computer execution time, labor time or
calendar time. Validated metrics (e.g., size, complexity) are used
during the design phase to make predictions of test or operational phase
factors (e.g., error count). The purpose of predIction is to provide
software managers with a forecast of the quality of the operational
software and to flag components for detailed inspection whose predicted
factor values are greater than (or less than) the target values S
(determined from requirements analysis). M' is shown as collected at
point 4 in Figure 1 and used for prediction at point 5.

Validity Criteria i

Validity criteria provide the rationale for validating metrics; they
are the specific quantitative relationships that are hypothesized to
exist between factors and metrics. Validity criteria, in turn, are based
on the principle of validity, which defines the general quantitative I
relationship between factors and metrics that must exist for the
validity criteria to be applied. First we provide definitions relating
to the principle of validity. Then we define the principle of validity.
Last we define each validity criterion and provide an example of its
application.

Definitions: 3
RIM): Relation R on vector M fcr V[PI, Ti, M) (1)

R[F]: Relation R on vector F for V[P1, T2, F) (2)

R[M'I:Relation R on vector M' for A[P2, TI, MI) (3)

R[F']:Relation R on vector F' for A[P2, T2, F'] (4)

where R could be, for example, an order relation like: I
Magnitude[M1 <M2 ... <M<,] and Magnitude[F,<F 2 .. .<F, involving n values
(data points) for M and F.

Principle of Validity:

IF R[M] <-> R[F] I
is validated statistically with confidence level a and, for certain
validity criteria, with threshold value 8,,,

THEN {R[M) <=> R[F]) -> {R[M'] => R[F']}? (5)

In other words, does the mapping M <-> F, validated on Project 1,
imply a mapping M' =--> F' on Project 2? We assume (5) to be true at
point 5 in Figure 1. Once F' is collected at point 6, we revalidate (or
invalidate) (5) by repeating the validation test using aggregated M and £
M' validated with respect to aggregated F and F' at point 7.

We note that a metric may be valid with respect to certain validity
criteria and invalid with respect to other criteria. Each validity I
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:riterion supports one or more of the quality functions assessment,
:ontrol and prediction, which were described abo-'e. The validity
:riteria -- association, consistency, discriminative power, tracking,
)redictability and repeatability -- are applied at point 3 of Figure 1.
The particular criteria that are used depend on the quality functions
ýone or more) that are to be supported.

The validation procedure requires that threshold values 6± be
;elected for certain validity criteria. The criterion used for selecting
-hese values is reasonableness (i.e., judgement must be exercised in
;electing values to strike a balance between the one extreme of causing
in M, which has a high degree of association with F, to fail validation
ind the other extreme of allowing an M of questionable validity to pass
7alidation).

A short simple numerical example follows the definition of each
ralidity criterion for the purpose of illustrating the basic concepts of
-he validity criteria. For illustrative purposes, F is error count and
I is cyclomatic complexity, or complexity for short, in the examples.
ýlso, to keep the examples simple, we use small sample sizes; these
;ample sizes would not be acceptable in practice. As noted previously,
;iven {F) and {M}, it is possible to have an M. in {M} predict multiple
?s in MF1 or to have an F, in {F) predicted by multiple Ms in (M).
lowever, in order to simplify the examples, only the one-to-one case
;ill be illustrated.

Association:

The variation in F explained by the variation in M, which is given by
Z' (coefficient of determination), where R is the linear correlation
:oefficient, must exceed a specified threshold, or

R' > B,,, with specified a. (6)

This criterion assesses whether there is a sufficient linear
Lssociation between F and M to warrant using M as an indirect measure of

This criterion supports the quality assessment function as follows:

If the elements of vector M, corresponding to components 1,2, ... ,n,
re ordered by magnitude, as illustrated in Table 1, can we infer a
inear ordering of F with respect to M for the purpose of assessing
ifferences in component quality? In other words does the following
old?

'agnitude[M, < M,...<M,...< M,] < > (7)
agnitude[F1 < F<... . F,)
nd (M_,. - MN) (F±C1 - F,) for i = 1,2,...,n-l.

The data of Table 1 are plotted in Figure 2 to contrast perfect with
mperfect association.
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Table 1
(Validation Project)

Component M M F F

(Magnitude) (Rank) (Magnitude) (Rank)

1 8 1 2 1

2 10 2 6 2

3 11 3 8 4

4 14 4 7 3

Since there is seldom perfect linear magnitude ordering between F and
M (i.e., R = 1.0), we use (6) to measure the degree to which (7) holds.
For example, if R = .9 and a = .05, then 81% of the variation in F
(error count) is explained by the variation in M (complexity), with an
acceptable confidence level. If this relationship is demonstrated over
a representative sample of components, and if B,, has been established as
.7, we could conclude that M is associated with F and can be used to
compare magnitudes of complexity obtained from different components to
assess the degree to which they differ in quality (e.g., the difference
in complexity magnitude between component 2 and-component 1 (10 - 8) is
proportional to their differences in quality in Table 1).

The resultant M' would be used to assess differences in the quality

of components on the application project.

Consistency:

The rank correlation coefficient r between F and M must exceed a
specified threshold, or

r > 8,, with specified a. (8)

This criterion assesses whether there is sufficient consistency
between the ranks of F and the ranks of M to warrant using M as an
indirect measure of F [9]. This criterion supports the quality
assessment function as follows:

If the elements of vector M, corresponding to components 1,2, ... ,n,
are ordered by rank, as illustrated in Table 1, can we infer an ordering
of F with respect to M for the purpose of assessing the rank order of
component quality? In other words does the following hold?

Rank[M1 < M2 ... <Ml...< Mn] <=--> (9)
Rank[F, < F,..2_<,...< F,]

The data of Tatle 1 are plotted in Figure 3 to contrast perfect with
imperfect consistency for the same set of components.

Since there is seldom perfect rank ordering between F and M (i.e., r
= 1.0), w- use (8) to measure the degree to which (9) holds. For
example, if r = .8 and a = .05, there is an 80% ranking between F and
K, with an acceptable confidence level. If this relationship is
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demonstrated over a representative sample at components, ilid I 1_,n
been established as .7, we could conclude that M is consis;tent wtF
and can be used to compare ranks of complexity obt*,-nei C:-m 4i 4 (,1x
components to assess the degree to which th ly dicllc (n :cfvu eAu (:"v
(e.g. , component 2 quality is lower (highe: p c; :<i iti v c

1 quality in Table 1).

The resultant M' would be used to ess x c-]at iv,< cw c:
components on the application project.

Discri.miziative Power:

The critical value of a metric M.. must _±L: > d;cx ~ c.:
a specified F,,, between elements (componen ,. ,...,.... n) of v-c,:
F 117], in the following way:

M, > M,, < > F, > F_ and (1C)
S< M_ < > F, F.

for i = 1,2,...,n, with specified a.

This criterion assesses whether M.. s : ufI i c i.nt di ccr in" i :v
power to warrant using it as an indirect measure of F.. This erit r:cm
supports the quality control function as foilows:

Would M,., as illustrated in Table 2, partition F, for a specified F,-'
as defined in (10)? For example, the data from Table I is used in Table
2, with M. = 10 and F, = 2. We see that discriminative power is not,
perfect in Table 2 (i.e., O., / 0). If it is desired to flag compon.nts
with more than two errors (F > F,) for detailed inspection, and if M',-
= 10 (complexity) is validated, it would be used on the applicatcic
project to control quality (i.e., discriminate between acceptable and
unacceptable components), as shown in Figure 4. One purpose of Figure 4
is to identify trends in quality (e.g., a persistent case of component:?;
being in the unacceptable zone).

Table 2
(Validation Projct) )

M,= 10 1M M, M > M"
F ,, = 2 MI

F < F. 011 = 1 01 = 0

F > F, 021 = 1 022 2

O•j = count of observations in cell i,j.

0,,, 0, correct classifications.

O0, O0 : incorrect classifications.
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M, M,

M Unacceptable Conponp-.-c:

M I0 1

Acceptable Components

M 2  M3 N4  1
Application Project Time >i

Figure 4. Application of Metrics to Quality Control (discriminative
power) for Components 1,2,...,n 5

Since there is seldom a perfect discriminator M, for F,, (i.e., Os1..
021 = 0 in Table 2), we use an appropriate statistical method (e.g.,
chi-square contingency table [7,8,12]) and representative sample of I
components to measure the degree to which (10) holds.

Tracking: 5
M must change in unison with F, for a given component i, at times

Ti,T2 ,...Tj,...,Tm as follows: 5
M±(Tj,,) > Mt(Tj) <-> F±(Tj-,) > FI(Tj) and (11)
M,(Tjý,) = M±(Tj) <-> F±(Tj-÷) = FI(T.) and
M,(T_ ,) < M:L(Tj) <----> F•t(T_, ) < F,.(TI)1

with specified a.

This criterion is illustrated graphically in Figure 5 to contrast I
perfect with imperfect tracking, where factor and metric values are
plotted against project time. g

This criterion assesses whether M is capable of tracking changes in
F (e.g., as a result of design changes) to a sufficient degree to
warrant using M as an indirect measure of F. This criterion supports the 1
quality control function as follows:

Would changes in M track changes in F as defined in (11)? If M is
validated, then a vector M',(Tj) consisting of the values
M' 1 (T 1 ),M' 1 (T 2 ),... ,M' 1 (T 1 ),...,M'(T,) of component i, measured at
times T1 ,T 2 ,...,T,,...,Tm would be used to track quality on the
application project. For example, if complexity M', is valid for 1
tracking error count F, M', would be used as shown in Figure 6, where
quality increases from T, to T2 , stays the same from T2 to T-, and
decreases thereafter. 1
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T, T, T, T, Tm

Application Project Time 3
Figure 6. Application of Metrics to Quality Control (tracking)

for Component i at Times 1,2,...,m

Since there is seldom perfect tracking of F by M, we use an I'

appropriate statistical method (e.g., binary sequences test [8]) and
representative sample for component i to measure the degree to which
(11) holds. I

Predictability:

A function of M, f(M), where M is measured at time TI, must predict
F, measured at time T2, with an accuracy B., or

Fa-, - Fpn.3 2 < gp (12)
Fa.. 3

where Fa., is the actual value and Fp.,, is the predicted value.

This criterion is illustrated graphically in Figure 7 to contrast
perfect with imperfect prediction, where f(M), formulated at Ti, will I
either turn out to be equal to Fa at T2 (perfect Predictability), or be
equal to Fp+ or Fp- (imperfect Predictability). i

> Fp+ Imperfect Predictability 3
F f(M) > Fa Perfect Predictability

> Fp- Imperfect Predictability i
T1 T2

Application Project Time >

Figure 7. Application of Metrics to Quality Prediction
(Predictability) for a Component I

This criterion assesses whether f(M) can predict F with required
accuracy. This criterion supports the quality prediction function as
follows:

If (12) holds, would the following hold? 3
FpT, = f(M, 1 ) -> Fp',. 2 = f(M',,) (13)
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where vector Fp.2, = [F,, F .... ,F4]., 2 and vector M., = [M3, M2 ... I ,M"]j=
for components 1,2,...,n, and Fp'T 2 and M', are similarly defined. In
other words do we have:

Fa'... - p'.
< BL,. (14)

Fa'= 2

For example, if a function f, relating error count with complexity
can be identified (e.g., regression analysis) that is a good predictor
of F (i.e., satisfies (12)), then we would use the same f as the
predictor of F' to predict error count from complexity on the
application project.

Since there is seldom a perfect f, (i.e., Fp. 2 = Far,,), we use (12)
to measure the degree to which f predicts F.

Repeatability:

The success rate of validating M for a given validity criterion i
must satisfy:

NI_/NI > Bz = (15)

where N,_ is the number of validations of M for criterion i and N, is
the total number of trials for criterion i.

This criterion assesses whether M can be validated on a sufficient
percentage of trials to have confidence that it would be a dependable
indicator of quality in the long run. We use "trials" because validation
could be performed with respect to projects, applications, components,
or some other appropriate entity.

Metrics Validation Process

Given that there must be a validation project V and an application
project A, as shown in Figure 1, this requirement gives rise to what we
call the "fundamental problem in metrics validation". This problem
arises because there could be significant time lags, product and process
differences, and differences in goals and environments [5] between the
following phases of the validation process (see Figure 1):

1) V[Pl, TI, M) and V[Pl, T2, F]
2) V[PI, T2, F) and A[P2, TI, M']
3) A[P2, Ti, M'] and AjP2, T2, F'].

An important characteristic of the methodology is expressed by the
following:

IF V[Pl, Ti, MI <- > V[PI, T2, F] (16)
THEN A[P2, TI, M'] -- > A[P2, T2, F'].

From (16) it follows that at point 3 in Figure 1, M is validated in
V. Whether M' will actually be valid in A will not be known until point
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7. Thus it is worthwhile to discuss some of the practical difficulties
of adhering to (16) and possible remedies.

With respect to 1), the product or process may have changed so much
between Ti and T2 that M collected at Ti may no longer be representative
of F. If this is the case, M should be collected again at T2 to validate
against F. The advantage of collecting M at T1 is that it may be easier
and less expensive than at T2 because M can be collected as a by-product I
of compilation and design and code inspections.

The same considerations apply with respect to 3) except now the
concern is with whether M' collected at T1 should be used for i
revalidation at T2. However, note that it is mandatory that M, be
collected at T1 to have an early indication of possible quality problems
(that is a key concept of our methodology!).

With respect to 2), we can achieve a degree of stability in the
validation process if the following procedure is employed: I
a) Select V and A to be as similar as possible with respect to

application and development environments. 3
With respect to 1), 2) and 3) considered jointly, we can achieve a

degree of stability in the validation process if a) is employed plus the
following two additional procedures:

b) Select the same life cycle phase for Ti in V and A.
c) Select the same life cycle phase for T2 in V and A. 3

We recognize that it may be infeasible to implement a), b) and c).
this is the case, it means there is a higher risk that M validated at
point 3 in Figure 1 will not remain valid at point 5.

NON-PARAMETRIC STATISTICAL METHODS FOR METRICS VALIDATION

Non-parametric statistical methods are used to support metrics
validation because these methods have important advantages over
parametric methods. Indeed it would be infeasible to validate metrics in j
many situations without their use. This is the case because the
assumptions that must be satisfied to employ non-parametric methods are
less demanding than those that apply to parametric methods. This might.
lead to the conclusion that non-parametric methods are less rigorous 3
than parametric methods. Despite this possible perception, non-
parametric methods allow us to develop very useful order relations
concerning the relative quality of components. The validity criteria i
which use non-parametric methods are shown in Table 3. The advantages of
non-parametric methods over parametric methods, which are important for
metrics validation, are the following:

o Given the noisiness of metrics data, the fact that the assumptions
are less restrictive is a big advantage. j

o No assumption is necessary about distribution (e.g., data does not
have to be normally distributed).
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"o We can use the nominal scale (i.e., component A is high quality,
component B is low quality) and location statistics like the median
[11]. The Discriminative Power validity criterion is based on this
measurement property. Similarly, we can use the nominal scale to
indicate whether an incremental change in a metric tracks (yes, no)
an incremental change in a factor. The Tracking validity criterion is
based on this measurement property.

"o We can use the ordinal scale (i.e., component A is higher quality
than component B) and order statistics, like ranks. The Consistency
validity criterion is based on this measurement property. For
example, ranks of random variables [3] can be used rather than the
values themselves, thus relaxing the assumptions about data
relationships (e.g., linearity) while providing a measure of quality
(e.g., ranking of components) that is useful to the software manager.
In other words the fact that the data is not as "well-behaved" as we
might believe it should be does not necessarily mean that it is less
useful. In fact, when we consider that many useful applications of
metrics can be derived from the ability to classify components as
being "higher quality" or "lower quality", we realize that the
information provided by non-parametric analysis is supportive of this
approach.

Despite the advantages of non-parametric methods, certain validity
criteria lend themselves to the use of parametric methods. These are
shown in Table 3. Association, which measures the difference in
component quality, uses the interval scale. Predictability uses the
interval scale to predict a factor value and the ratio scale for
-neasuring prediction accuracy. Lastly, Repeatability uses the ratio
scale for measuring metric validation success.

Appendix A summarizes quality function, validity criterion, purpose

Df valid metric, and statistical method.

Table 3

Validity Criteria Properties

Criterion Scale Method Measurement
Property

Association Interval Parametric Difference

Consistency Ordinal Non-parametric Higher/Lower

Discriminative Nominal Non-parametric High/Low
Power

Tracking Nominal Non-Parametric Increment

Predictability Interval, Ratio Parametric % Accuracy
Repeatability Ratio Parametric % Success
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EXAMPLE OF VALIDATING METRICS

The following example is provided to illustrate the validation of M i
with F and the identification of an M, which would be used in the
quality control function. Also we show how to conduct a cost sensitivity
analysis on M, in order to identify its optimal value (i.e., the minimum I
cost M,_ across a range of assumptions about the cost of using M,).

The data used in the example validation tests were collected from
actual software projects. The Discriminative Power validity test is I
illustrated.

Purpose of Metrics Validation 3
The purpose of this validation is to determine whether cyclomatic

number (complexity (C)) and size (number of source statements (S)) I
metrics, either singly or in combination, could be used to control the
factor reliability, as represented by the factor error count (E). A
summary of the data is shown in Table 4 and the detailed data listing
can be found in Appendix B.

Table 4 1
Project Application Procedures Statements Errors

(with errors)
1 String Processing 11 ( 5) 136 10
2 Directed Graph Analysis 31 (12) 430 27i3 Directed Graph Analysis 1 (1) 13 1
4 Data Base Management 69 (13) 1021 26 1

112 (31) 1600 64

Number of procedures: 112 total, 31 with errors, 81 with no errors. 5
Number of source statements: 2007 total, 1600 included in metrics
analysis.
Language Pascal on all projects.
Programmer: Single programmer. Same programmer on all projects.

Using the conventions of Figure 1, the following is the notation
applicable to this example:

Metric: C, S collected at point 1, Figure 1.
Factor: E, collected at point 2, Figure 1. I
Critical Value of Metric: C,,, So, validated at point 3, Figure 1.
V[Projects 1,2,3,4; Design; C, S]
V[Projects 1,2,3,4: Test; E]

Discriminative Power Validity Test

We divide the data into four categories, as shown in Table 5, 3
according to a critical value of C, C,, so that a chi-square test can be
performed to determine whether C, can discriminate between procedures
with errors and those with no errors [4]. I
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Table 5

Contingency Table

Complexity Complexity
< 3 >3

I------------)------------

SErrors 75 6 81

I-----------I-----------I

rrors 10 21 31

I------------I-----------
85 27 112

From the high value of chi-square (41.60) (see Table 6) and the very
nall significance level (1.26E-10) in the samples, we infer that C, =3
Duld discriminate between procedures with errors (low quality software)
ad those without errors (high quality software).

Table 5 shows how good a job C, =3 does to discriminate between
rocedures with errors and procedures with no errors: 75 of 81 with no
rrors and 21 of 31 with errors are correctly classified.

Table 6

rojects 1, 2, 3 and 4
L2 Procedures (81 with no errors, 31 with errors)

X 2 a

22.32 2.30E-6
32.14- 1.44E-8
41.60 1.26E-10
26.80 2.26E-7

ýnsitivity Analysis of Critical Value of Complexity

In order to see how good a discriminator C, is for this example, we
)serve the number of misclassifications that result for various values
* C,: 1) Type 1 ("error procedures" classified as "no error
-ocedures") and 2) Type 2 ("no error procedures" classified as "error
7ocedures"). This is shown in Figure 8. As Cc, increases, Type 1
.sclassifications increase because an increasing number of high
)mplexity procedures, many of which have errors, are classified as
Lving "no errors". Conversely, as Cc, decreases, Type 2
.sclassifications increase because an increasing number of low
)mplexity procedures, many of which have no errors, are classified as
Lving "errors". The total of the two curves represents the
disclassification function". It has a minimum at Cc, = 3, which is the
Llue given by the chi-square test (see Table 6). The chi-square test
.11 not always produce the optimal C, but the value should be close to
,timal.
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The foregoing analysis assumes that the costs of Type 1 and Type 2
nisclassifications are equal. This is usually not the case since the
:onsequences of not finding an error (i.e., concluding that there is no
2rror when, in fact, there is an error) would be higher than the other
3ase (i.e., concluding that there is an error when, in fact, there is no
error). In order to account for this situation, the number of Type 1
nisclassifications, for given values of C,, is multiplied by Ci/C2
(CI/C2 = 1, 2, 3, 4, 5), which is the ratio of the cost of Type 1
nisclassification to the cost of Type 2 misclassification. These values
are added to the number of Type 2 misclassification to produce the
Family of five "cost" curves shown in Figure 9. Naturally, with the
iigher cost of Type 1 misclassifications taking effect, the optimal C,
(i.e., minimum cost) decreases. However, even at Cl/C2 = 5, C, 3 is a
reasonable choice.

A Contingency Table was also developed for S, leading to S, 13. The
same type of sensitivity analysis was performed on S,. It was found that
the optimal S_ = 15, as opposed to S, = 13, as given by the chi-square
analysis.

We conclude that C and S are valid with respect to the Discriminative
?ower criterion and either could be used to distinguish between
acceptable (C < 3, S < 13) and unacceptable quality (C > 3, S > 13) for
this and similar applications when this data can be collected. However,
3nly one is needcd (i.e., C is highly correlated with S). It should be
aoted that it is less expensive to collect S than C.

SUMMARY AND FUTURE RESEARCH
We described and illustrated a comprehensive metrics validation

nethodology that has six validity criteria, which support the quality
Functions of assessment, control and prediction. Six criteria were
Jefined and illustrated: association, consistency, discriminative power,
tracking, predictability and repeatability. These criteria are important
oecause they provide a rationale for validating metrics; in practice,
this rationale is frequently lacking in the selection and application of
netrics. With validated metrics we have a basis for making decisions and
taking actions to improve the quality of software. We showed that
4uality factors, metrics and functions can be integrated with our
-ietrics validation process. We developed a framework which pulls
together the concepts and definitions of quality factor, quality metric,
validated metric, quality function, validity criteria, and the metrics
validation process. We showed that non-parametric statistical methods
play an important role in evaluating whether metrics satisfy the
validity criteria. An example of the application of the methodology was
presented for the discriminative power validation criterion. The
liscriminative power criterion allows the metrics user to control the
production of highly reliable software by providing thresholds of
acceptable quality.

Future research is needed to extend and improve the methodology by
Finding an answer to the following question:

D To what extent are metrics that have been validated on one project,
ising our criteria, valid measures of quality on future projects -- both
similar and different projects?
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u ti APPENDIX A

Quality Validity Purpose of Statistical
Function Criterion Valid Metric Method

uality Association Assess 1. Coeff. of Determinatiorl
ussessmait differences in RW' > f3,.

quality
2. 110: Population5Correlation Coeff. - 0.

3. 110: Population Correlatioi,
Coefficient > 1B..

4j Linear Partial
Correlation Coeff.
(Metric Normalization.
Accounting for Size).

5. Population Correlation
Coefficient Confidence
Interval.

6. Factor Analysis
(Tests of Independence).

Quality Consistency Assess relative 1. Rank Correlation
Assessment quality Coefficient r > B,.

Quality Discriminative Control Quality I. Mann-Whitney Comparison
Control Power (discriminate of Average Ranks of Two

between high Groups of components.
and low)

2. Chi-square ContingencyTable for Finding
Critical Value of

I Metric.

3. Short-Cut Technique for
Finding Critical Value of
Metric: Maximize 01,02,.

4. Sensitivity Analysis ofSCritical Value of Metric.

5. Krusal-Wallis Test of
Average Metric Rank
Per Given Value of
Quality Factor.

6. Discriminant Analysis
(Use of a Single Metric's
Mean as Discriminator).

tQuality Tracking Control quality 1. Binary Sequences Test and

Control (track changes) Wald-Wolfowitz Runs Test.
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APPENDIX A (Continued) 1

Quality Validity Purpose of Statistical
Function Criterion Valid Metric Method

Quality Predictability Predict 1. Scatter Plot to
Prediction quality Investigate Linearity.

2. Linear Regression.

a. Test Assumptions.
b. Examine Residuals.

3. Find Confidence and
Prediction Intervals. I

4. Test for Predictability
< Threshold (B.) and I
Repeatability >Threshold (S,3).

5. Non-linear Regression. I
6. Multiple Linear

Regression.

a. Test Assumptions.
b. Examine Residuals.
c. Test for

Predictability
< Threshold (BI,) and
Repeatability > IThreshold (Bj.

All Repeatability Ensure metric Ratio of
Quality validated with Validations to
Functions specified Total Trials >

success rate Threshold (B8,).
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APPENDIX B

C: Complexity, S: Number of Source Stat<oments (excIudinq comment::

E: Error Count

Procedures with No Errors

C S E Project C S E Project

2 6 0 1
1 8 0 1 i 3 0 -

1 11 0 1 '3.

1 4 0 5 S1 8 0 ]15 0 -

3 15 0 i 6 0
1 3 0 9 0
1 3 0 6 0
1 3 0,8
i 3 0 Ci 9

1 3 0

3 0 2 9 0
1 3 0 5 5 6 0 .

5 0 0 .;

1 13 0 2 93 0 9

i 3 0 210 0 4

1 3 0 2 29 0

1 3 0 2
1 3 0 2 43 0

1 3 0 19 0 4
1 3 0 220 0 4

! 2 0 4 26O,
1 0 4 2 12 0 4
1 7 0 4 2 9 0 4
1 5 0 4 10 0 4

1 3 0 4 ! 21 0 9

1 5 0 4 4 0 4
1 5 0 4 3 12 0
1 5 0 4 2 13 0 4

1 5 0 4 3 14 0 9

1 4 0 4 7 19 0 4

1 3 0 4 2 1 0 9

1 3 0 4 2 13 0 4

1 3 0 4 2 17 0 4
1 3 0 4 3 19 0 4
1 3 0 4 3 15 0 4

2 15 0 4
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APPENDIX B (Continued) 5
Procedures with Errors

C S E Project C S E Project 3
2 14 1 1 4 .
6 26 5 1 16 94
5 7 2 1 2 13 I
5 21 1 1 6 ;4
2 6 1 i5 !4I

1 3 1 .L 0 37I
! 11 2 3 ]
1 8 1 2 3 16
2 15 3 2 7 34 i

8 45 3 2 5 24 4
4 18 2 44

6 54 3 2 5 35 2 4

2 34 2 2 13 49 4

4 19 1 2 4 1 I
5 30 2 4 3 i

4I

II
I
I
I
I
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Abstract

This paper presents an organizational structure, the Consolidated Experience Factory (CEF), for
instrumenting the system development process. Goals of interest to systems engineers and that can be

satisfied by process and products metrics are briefly summarized. The goal-questions-metrics

methodology has been developed in the context of software metrics for deriving individual metrics from

high-level goals. Experience factories are organizations parallel to system development organizations

that serve to define metrics, collect and validate data, analyze the data, and package the results in a

usable form. The CEF is an organization for integrating the results of many experience factories.

Keywords

Systems engineering, Systems metrics, process metrics, software metrics, experience factories.
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1. Introduction

This paper presents an approach for instrumentation, data collection, analysis, and improvement I
of the systems engineering process. This approach, known as the Consolidated Experience Factory

(CEF), has been developed by Victor Basili of the University of Maryland in conjunction with the Data &

Analysis Center for Software (DACS). The CEF was defined for software development and

maintenance, but, as this paper shows, the approach is general enough to apply to systems 5
development as a whole. Given the recognized importance of software in defense systems acquisition,

the CEF attacks a crucial component of the problem addressed by this conference.

This paper is organized into six sections. Section 2 summarizes the systems engineering needs

addressed by experience factories. Section 3 presents a method used in software, the 3
Goals/Questions/Metrics paradigm, for deriving metrics from high level goals. Section 4 presents the

concept of an experience factory, a logical or physical organization for measuring systems development,

while Section 5 presents the Consolidated Experience Factory, an organization for integrating several

experience factories. Finally, the concluding section discusses future work neded to implement this Ii
approach for instrumenting systems engineering.

2. Goal-Driven System Metrics 3
The first premise of the CEF approach is that measurements should be introduced into the

development process to address specific goals. This premise may appear obvious, but some I
measurement projects for software have defined a comprehensive set of metrics such that any high-

level goals were obscured. The Software Technology for Adaptable Reliable Systems (STARS) Data 5
Collection Forms [1ITRI 851 are a typical example. Furthermore, since a complete feasible set of metrics

could not be known at the initiation of the field of software metrics, a failure to recognize this premise 3
was probably a necessary stage in the field's development. The introduction of system metrics should

take advantage of the expertise built up in software metrics over the last two decades and begin with a

topdown approach.

The goals driving the system metrics collected on a particular project should be derived from the 3
requirements of that project, the development organization, and the Navy sponsoring agencies. The

particular metrics discussed in this paper are not those needed to test system requirements, such as

throughput or functionality, but mainly process metrics to assist developers in project management. For

example, a database can be developed characterizing the system development process in terms of the

distribution of failures throughout the life cycle. A project manager can then compare how his data fits a

typical project "fingerprint" at any point of time. Significant deviations will then suggest issues the
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manager will want to address. A metric-based process can be used to insure systems are actually ready

for scheduled reviews. The Army's Software Test and Evaluation Panel metrics are being used in this

way [DOA-PAM-73XXJ. A database of metric data on past projects conducted by the developing

organization is required to fully implement a metric-based approach to systems development.

A system development organization will have goals that can be supported by metrics, in addition

to the requirements of individual projects. The organization will need to develop the database o1 metric

data that supports individual project managers. The organization will want to characterize their

development process so as to support process improvements in a controlled manner. They will want to

measure the effects of proposed techniques by controlled experiments. Once controlled experiments

lead to a determination that a new technology should be adopted, measurement needs to be conducted

to ensure that it is properly transferred to individual projects and that the expected benefits are obtained.

The development organization needs to understand relationships between the system development

process and the resulting products. All of these goals are most fully supported by more than raw metric

data. -1 he methods used in packaging metric-based models of the development process need to be

carefully considered.

The Navy may want to consider the research needs of system engineering as a whole in their

systems engineering program. If so, they should consider how to integrate the different research activies

conducted on system engineering and avoid bottom-up isolated research activities. Experimentation and

measurement should be used to evaluate and analyze systems research. The results of research

should be refined and tailored for application environments and packaged such that they can be easily

transferred to practice. The relationships between models of the development process and the products

should be made clear. These high-level goals, and others, are addressed by the organization described

in this paper.

3. The Goals-Question-Metrics Paradigm

Various top down approaches have been defined for deriving metrics from goals in software

engineering. For example, Rome Laboratory has sponsored research that has developed a hierarchical

framework for measuring specific quality factors [Bowen 85]. More suitable for a systems approach

because of its generality is the Goals-Questions-Metrics (GOM) paradigm IBasili 90). In fact, it was

developed specifically to fit into the experience factory approach described in this paper.

The GOM paradigm is a mechanism for defining and interpreting measurable software (or system)

goals. Goals are typically stated in the following format:
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Purpose:

Analyze some object (e.g. process, product, experience model) for the purpose of why (e.g.

characterization, evaluation, prediction, motivation, improvement) 3
Perspective 3
with respect to focus (e.g. cost, correctness, aefect removal, reliability, user friendliness) from the point

of view of who (e.g. user, customer, manager, developer, corporation) I
Environment

in the following context (e.g. problem factors, people factors, resource factors, process factors). I
The GOM paradigm then provides a structured process for generating measurement related questions I
from these goals. Each question, in turn, generates a set of metrics.

The GOM paradigm is not yet cookbook; it's application requires a knowledgable person. As with U
all topdown approaches, its employment requires insight into reasonable lower level results.

Furthermore, the templates developed so far are for software, not systems. Nevertheless, this paradigm

is a very promising approach for system metrics. I
4. The Experience Factory - An Organization for System

Measurment I
Experience factories provide an organization to apply measurement to system development to

best meet the needs of individual projects and systems engineering organizations [Basili 89]. An I
experience factory is a logical organization supporting systems development by analyzing and

synthesizing measured experiences, creating a repository of useful information, and supplying packaged

results to various projects as they need them.

Input to the experience factory includes goals and data. The factory analyzes that data to I
characterize the environment and systems engineering methods, evaluate, predict, and improve. The

outputs are packaged models. 3
Packaged 3•sufts are central to an experience factory. It does not merely act as a repository of

metric data. Packaging can best be displayed by means of examples. First, simple models might include I
simple formulas for prediction. For example, in software an equation might be given predicting total effort

as a function of source lines of code, faults per thousand lines of code as a function of what methods

are used, or total schedule length as a function of source lines. Packaged models of this sort are

obviously useful for forecasting and planning purposes. More complicated packages might include 3
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distributions of key variables, such as types of failures, at particular points ir, the life cycle. This second

type of packaged result is useful for controlling a project during its development, as well as refining

predictions. A third type of packaged result would be even more detailed. Models might be created,

using a formal notation for the development process, showing the impacts of various combinations of

methods on the distributions of key variables. With this sort of packaged result, the systems engineer

can design his life cycle to meet his particular needs. The organization can also use these results it, a

scientific manner to assess the impacts of introducing proposed systems engineering techniques.

5. The Consolidated Experience Factory to Integrate Experience
Factories

Many systems engineering groups might set up parallel experience factories. These factories will

then be churning away producing packaged models that serve the needs of their groups more or less

successfully. The discipline of systems engineering as a whole will be best served by integrating the

results of the various experience factories. The Consolidated Experience Factory (CEF) will serve this

purpose.

The CEF is an organization separate from any developer or experience factory. It recyves input

from the various experience factories and produces results of use to them. The CEF would answer

questions like the following:

"* What questions and metrics have organizations found useful for addressing specific goals?

"* If a new method is introduced into a systems development organization, how might that effect

packaged prediction models, based on the packaged results of other experience factories?

"* What is the domain of applicability of various models? For example, what characteristics of a

development organization determine which of many reliability models work the most successfully?

" Can "metamodels" be produced that combine models across experience factories? Will these

metamodels be more useful than models tailored for an individual systems organization, especially

as those organizations change?

6. Facing Many Questions

This paper has proposed a set of organizations (experience factories and the Consolidated

Experience Factory) for instrumenting systems engineering to support the discipline's improvement in a

measured, structured, and scientific manner. How can this vision be brought to pass?
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First, this approach has only been detined for software in the past. The concept is general 3

enough to apply to systems, but the details need to be redefined for systems. For example, templates

have been defined in the past for applying the Goals/Questions/Metrics paradigm to software. New 3
templates need to be created for systems.

Second, this vision can be fulfilled incrementally. The CEF can initially have a role of helping a 3
small number of organizations create their own local experience factories. Perhaps, in keeping with this

incremental strategy, these initial efforts need only focus on one aspect of the systems problem, I
software being the natural candidate.

Finally, details of sharing data must be defined. Questions of data confidentiality are not so 3
important for a local experience factory and its development organization. But they are crucial for the

interface between the Consolidated Experience Factory and the local experience factories. The concept 3
of "packaged" results presents a new approach to successfully addressing this problem.
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This paper presents a framework for classifying projects engaged in
the engineering or reengineering of complex Navy systems. The object of
this framework is to establish comparability among dissimilar projects and
to aid in the transition to newer, more effective paradigms. The paper
examines the problems faced by the Navy in the evolution of existing
systems and analyzes the software process in the context of this challenge.
A four-dimensional framework is defined for classifying projects and their
data.

Introduction

The development, maintenance, and evolution of mission-critical, real-time systems
is a very complex task. These systems are comprised of many communicating independent
subsystems that must work together in a variety of stressful environments, some of which
will be untested prior to the initial encounter. The systems are governed by the laws of
physics, which may impose severe time constraints on both decisions and actions, and they
must support the decision making of those who use and rely on them. These systems are
composed of hardware, software, and humans, and each subsystem receives inputs from and
directs outputs to other hardware, software, and human interfaces.

As demonstrated in Desert Storm, the Navy has developed excellent systems that
perform very well. Many of these systems require more than a decade for development, and
budgetary constraints are certain to limit the number of completely new systems !hat will
be built in the near future. Thus, the challenge is to support the refinement of the existing
systems by accepting modified or enlarged missions and exploiting emerging technologies
while, at the same time, taking advantage of the Navy's significant investment in existing
systems.

No formal models exist for a complete system. There are scientists and engineers
who are specialists in selected areas such as sonar, radar, command and control, and
weapons control systems. Yet, as the systems become further integrated and complex, we

This work was supported in part by the U. S. Navy, Space and Naval Warfare Systems Command (SPAWAR)
under contract N00039-91-C-00X)1, task VMAR9 with the Office of Naval Research (ONR) and the Naval
Surface Warfare Center (NSWC).
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find problems that can be resolved only in a multidisciplinary setting. The consequences of
interaction are difficult to anticipate, and there are few formal mechanisms for modeling the
nonfunctional requirements associated with timing and resource utilization. In summary,
we are confronted by "wicked problems" that can be neither resolved within a single
discipline nor comprehended by a single individual. Our successes to date illustrate that
viable solutions are within the state of the art. Our goal, therefore, is to continue this
progress in a mode that emphasizes upgrade rather than retirement, reuse rather than I
replacement.

Although the task at hand may seem very restrictive, there are at least two reasons I
for optimism. First, one learns by experience, and the existence of complex, effective
tactical systems is evidence that significant stores of knowledge exist. One problem with this
knowledge base is that it is poorly organized. In software, for example, the knowledge of
what the system does is embedded in the code, which describes-not what is done-but how
it is done. One consequence is that only small software modifications are attempted; lacking
system-level understanding, program managers avoid risk by localizing change. Such an I
approach is quite reasonable in an environment in which the next generation system will
replace the present generation, but it is incompatible with a philosophy of evolving from
one generation system to the next. I

Fortunately, the second reason for optimism addresses this problem. A revolution
in the way we perceive software is underway, and this makes the more rational capture and
reuse of system knowledge possible. This transition to a newview of software, however, is
still in its early stages, and most research in software engineering builds on the existing
paradigm. Thus, when viewed in the context of how projects now are run, the new approach
may seem speculative and high risk. Yet, because it offers such a potential for process I
improvement (as measured in productivity, adaptability, and quality), it is an important area
of research. Further, because many researchers have been working with this paradigm for
more than a decade, there is also a potential for near-term application.

Since 19801 have been workingwith a modified paradigm for systems development.
Most of my experience has been with interactive information systems, and a decade of
activity has been carefully evaluated and reported [Enib89, Blum90]. During the past few
years I have been working in the domain of complex systems, albeit at the conceptual level.
One product of this research is a new understandingof howwe developsystems and the role
that software plays in a system's development and evolution. This understanding now is
sufficiently mature to permit the formulation of a framework for classifying activities that
both aids in project comprehension and leads to the adoption of more effective methods.

This paper describes a general framework for engineering and reengineering that
should aid in the evolution from one generation of system to the next. Because new systems I
will e-olve from one generation to the next, the distinction between engineering and

reengineering is fuzzy. For example, the introduction of a newly engineered component
may have no immediate effect on the system's functionality, and the need to comply with I
existing interfaces may constrain a new development. Thus, rather than distinguish between
these complementary activities, I shall treat them as one. Therefore, the objective of an
engineering/reengineering framework is to guide the development and evolution of a system 3
throughout its productive lifetime. It must consider the immediate concerns of the
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managerial and technical staffs resprnsib! for the engineering/reengincering activities, and
it also must examine how their efforts can build a foundation for improved technology.
Restating this, the framework must provide guidance for today's projects and build a bridge
to the technology of the next decade.

Observations on Software Engineering

My area of interest is software engineering, which-in a narrowsense-involves the
managing, conducting and evaluating the development and maintenance o' software
components. It is a branch of engineering in that it focuses on the creation of useful
artifacts through the application of scientific principles. It differs from most other
engineering disciplines in that software engineering is not bound by the physical laws of
nature; rather it is guided by the models that formalize cur current understanding. That is,
unlike electrical engineering, which must respond to repeatable, external phenomena, the
solution space of the software engineer is dominated by the formal models created by
computer science (e.g., programming languages, tools for representing abstractions). The
software engineer's models are artifacts: products of human creativity. Unlike the laws that
explain the behavior of electrons, these models establish an approach to software dev " .
men' that becomes a self-fulfilling prophesy. The software engineer's interpretatic , L thtL
problem determines his response to it, and one theme of my research is that t1- * oftware
engineer begins with an imperfect problem statement.

Although software engineers focus on a software product, it must be recognized that
virtually every software product must operate on a computer (i.e., with hardware) and
interact with users (i.e., humans). Thus, software is always a part of some larger system
(which, in turn, may be part of an even larger system). Moreover, the goal of that system
is to meet some need in the application domain. The interpretation of a software product
outside the scope of the system and the need ,, addresses represents a level of abstraction
fraught with danger. Thus, the primary challenge that the software engineer faces is not
how to write or modify some piece of code; rather, it is to understand how that code meets
some need. The software engineer must recognize that he is performing systems
engineering and that the code is simply a.n expression of the most detailed design of a
response to a need. Unfortunately, this mode of thinking is not very common, which can
result in long-term consequences over the Ffe of a system.

The seeds of today's software orientation were sowed in the early days of
computing. The first need was to produce programs; symbolic assemblers and high-order
languages made that task easier. Once we mastered the writing of programs, we confronted
the difficulty in creating systems. The discipline of software engineering was spawned by
the NATO-sponsored conferences [NaRa691. These meetings focused on the development
of large-scale, system-oriented software. The waterfall flow, first introduced by Royce
[Royc70] in 1970 and later refined by Boehm [Boeh76], introduced a phased development.
One LOuld not go on to the next phase until the previous phase was complete and validated.
The oufput from each phase was used to define the scope of its successor phase, and the
model provided for corrective feedback to earlier phases. This model for software
development was copied from experiencewith hardware; indeed, Boehrm'swaterfall diagram
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I believe that this hadae-aeproduct -oriented view of the software process
has led us to) focus on the software imrplemenrtation rather than the knowledge that
motivated its creation [Blum92c]. This Idea can best be introduced by wa y' of t he softwa reI
process metamodel in Fig~ure 1. It presecnts the essence of the SOftware process as a
transformation from some need In an application domain into a software implementation
that responds to that need. Two noti otersectin g modeling lines are shown. The coni.,eptualI
mnodels reflect the apphicat ion domain per-spective: they' describe. the prop ifscd resp~onse to
lthe need. Although the conceptual modelis use domain formalisms and express the domain
specialists' intent, they are not formal In the computer science sense. They are termedI
conceptual beca use theydescrilwb hut do rnot prcsciribe the software solut ion. The conceptual
models must be transformecd intofJoiinui Inod('l% that establish the essential behaviors andi
performance of th eie vfvicrdc.Finally, details are addcd until an implement a-I
tion exists that is correct with respect to the formal model. The implementation, of course.
is also a formal model.g

Software. however, is not static. Lechman defines E-typc programs as programs that
alter the requirements to which they respond, thereby initiating a demand for change

jLchmgO]. Thus, the mectamodel of Figure I Is hut one iteration within a continuing cycleI
of change and improvement. The transformation represented by this model, from a need
to a software product intended to meet that need, can be decomposed into a sequence ofg

Although there are sonic soliwire process, ni~xtts. such as the operational appro-ach lh;ivcMI4 and modelc

execution lI-are92l, that do not echo the hardwa~rc devclopment miodel, space does not allow us to conider them
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Application Conceptual Models

Domain
Formal Models Implementai~on

Domain

Figure I The essential softviarc proccs.v

three transformations.

From the need identified in the application domain to the conceptual model that
establishes how the technol ogy can provide an approptiatc solut ion, flere anal,-sts
require a dcc( ) understanding ot the application domain plus knowledge (f the
potential solutions supported by the technolovy.

From the coMceptual modcl, which describes in terms natural to the domain
specialist what is to be implemented, to a formal model, which establishes the
behavior and performance of the product to be delivered.

From the formal model to the implementation. This is the historic domain of
software engineering. Thc final step in this process (e.g., compilation) is alwa,.s
automated.

Notice that many distinct classes ol conceptual model wvill be valid responses to a given
need, many distinct classes of formal model will be valid translations of a given conceptual
model, and many distinct classes of implementation will be correct for a given formal model.
Thus, the software process (and, indeed, every design process) involves successive
restrictions of the solution space until only one solution exists. Knowledge related to
rejected alternatives seldom is retained. This implies that, as the product evolves, t'enrich
our understanding of the particular solution that the product represents. but we lose
knowledge associated only with alternative solutions.

It is important to distinguish between a need and a specific response to that need.
As it is currently constituted, the software process narrows the solution space to realize a
particular response to a need. The need, however, can be open (i.e., there are many
potential responses that could satisfy it) or closed (i.e.. the solution implies a specific
response) [BIMo92]. Consequently, there will be many conceptual and formal models that
can fulfill the intent of an open application need, and, in contrast, few models will exist that
can satisfy the requirements of a closed objective. But once a solution is accepted and
expressed as a formal model, the problem space is changed. Correctness of the software is
with respect to that particular solution (i.e., not with respect to the initial need). After the
formal model exists, the design is open only to the extent that alternative designs are
available to satisfy the requirements (i.e., the problem space becomes that of software
implementation). When one begins with an understanding of the application need, the
openness of the problem is apparent. On the other hand, if one begins with the existing
implementation, it is very difficult to distinguish between the results of a design decision and
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the inherent constraints of the prfotbcl ThaT t o, hcrt h on 11. thorn the Ic it) thc ight In
Figure 1, one sees the sof.twaie In the contest ot the prt•hlen to be -.ocd In ,otrI I

when going from the right it) thc Icit, on': tile thuI rblcm in the conltet kt a |,a,ý ukl.11
response to it.

This difference in pcrspccti',cs is captuicd r Figure 2 tt shows t,, tts, a,-
paradigms. Theproduct-orientd paradigm i• th. trtdhitional hardwarebascd ,Icw of th• I
process. One begins with a m ys t •mn eateM (I C. the Itormal model of tigure 1 and
concludes with the implementation ot the syst he. i TnIh olemnoriented paradigni, tilo the
other hand, operates within the probhcn space, it begins with the identification ofa solution11
to the problem and ends with the cornplcte d&sin tof that solution In the Context of th•
three transformations in Figure 1. the proxduct oric ntation foc:usc on the third ttansrfo ma
tion and the problem oricntatiion on the l irst two. (The ,olulion design is thu detailed I
formal model.) For closed problems, there are few solutions, and tne can b- sp+cificd and
implemented. For open problems, hiwevcvr, thefe iN the danger that the product wAill bc
bound to a solution that becomecs o•solcuccnt, here it is desirable to retain a lulf I
understanding of the problem to be solvcd and the alternative solutions under consider-
ation. Unfortunately, the to paradigms are incornpatible, they cannot be merged, and one
cannot evolve from the other. And this placcs us on the horns of a dilemma. Many of theI
Navy tactical systems involve hrdwarc. %%hich must he specified before it is manufactured.
yet-as noted in the introduction-most improvements to Navy tactical s,.,stcms v, ill comen
through incremental enhancements.

Product Oriented Problem Oriented 3
Top System 'Solution

Specification Identification

Bottom System Solution !
Implementation Design

Figure 2 "'1\o so•itwarc paradigms. I
The consequences of this tension between system goals and product structure are

illustrated in the next three figures. Figure 3 depicts the formal knowledge of a system I
developed with a product-oriented paradigm. It depicts a concept of operations, which is
supported by a requirements document that defines a specific system to support that

concept of operations. The remaining Ifur trapezoids in the diagram represent the I
successive levels of dctail necessary to produce a product that supports the intended
concept of operations in the prescribed manner. (The diagram shows the source code as
the lowest level of design detail, not a product created from the design.) If the concept of U
operations is static and if the knowledge is well documented, then the knowledge structure
shown in Figure 3 is very effective. One can trace code to requirements and concepts to
operational entities. But there arc two fundamental problems with the knowledge base in
Figure 3. First, the knowledge is poorly organized, often incomplete, and difficult to access
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or integrate. It tenkd to be clucumcni. bitscd, aind there are relativcly few& formally
maintained links between levels fc.g., ctiancs ito the source code may not he reflected in
thc PDL and vice versa). Second, the knowlcdlee base i-s dynamic, and the concept ol
operations shifts as system experience g~rows and ais the external environment changes.

Fiue4 demonstrates the koldesi'asa concept of operations adapts to

external requirements. In this example. the concept of opet itions has Identified .i

completely new mission, but the product itself has not changed (Le.. the source code is
unatacred). Now% there is a mismatch bectweecn what the program k'source code) does and
what is necded (the concept of operations). The figure shows the rc,,iircmcnts for a new
product that will respond to the new need. Although the new requirements differ from the
old requirements, much of the design (and source code) can he reused. Dashed liv'es, depict
the parts of the existing system that are obsolescent with respect to the new concept of
operations. In an era of new system development, the "safe'* approach would be to scrap
the old system and custom build] a new system. Such an attack is now recognized as being
too expensive and of too high a risk. Consequently. there is a need to reengineer reusable
components in the older system and tc -uide the development of the new System In the
exploitation of the reusable components jFrcc87. Trac&S.' PrAr9l. Boeh9ol. From a
knowledge-based perspective, the challcnice is to look down from the concept of operations
to identify what concepts an(l operations can be gecneralized (e.g.. the domain analysis
orientation) and look up from (thc level of the source code to identifywhat components can
be reengineered for reuse (e~g.. thie comnponent library orientation). Unfortunately, the
knowledge, arranged so neatly in Figure 3. is not structured to support such a transition.

A different change scen ario is presented in Figure 5. Here the concept of
operations document has remained relatively fixed, but the programs have been altered.
Thus, although thcre have been many changes to the source code, the rationale for these
changes may not have been documented as changes to the concept of operations or the
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Figure 4 Knowledge of an existing system and a new concept of operations. 3
requirements. Because the higher level documentation (i.e-. knowledge) is out of date, it

is viewed as untrustworthy. and the incentive for not updating the higher level documents

increases. That is, because the documentation has not been updated, it is not used; because

it is not used, it will not be updated. Confronted with this reality, the maintainer focuses on

the object of change andl not the reason Jor change. (That is. on the product to be altered I
and not the problem to be solved.) Consequently, changcs arc limited to what can be

understood, and knowledge of the system degrades further.

Concov

/ Requirements

Design

/ /DOotaiW design

/,/I
1 Pseudocode (POLl

Source Code

Figure 5 Knowledge of a system as it evolves.
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One method for relieving this tension is to institute a knr'A ledge-based approach
in which knowledge of the application domain, the technology used, and specific systems arc
maintained in an integrated manner that permits reuse, prototyping, and the partially
automated generation of products. There arc many researchers working on rsponsscs of
this general category, and the purpose of this paper is to establish a frarnv, ork for
classifying Navy activities so that the experience may be exploited in the development and
adoption of new paradig~ms. In the context of what has been presented in this section, my
personal view is that we arc in a product-oriented paradigm and should move to a problem.
oriented paradigm. Many (including myself) arc working on alternative approaches., and it
would be premature to speculate about the Iorn of systems in that paradigm Nevertheless,
it should be clear that the new paradigm will bc knowledge-based, that it ill offer lttle

immediate help to projects embedded in a product -orien,ed paradigm, and that it represents
our best o br .he inexpensive, reliable. a:ld flexible evolution of futuic Navy tactical
systems

A Engineerint/Reenginvering Frame work

The objective of this section is to identify a framewvork for the description.
collection, and assessment of cngi nec ri ng'rccn gi ncer ing projects for complex systems.
Lacking such a framework, commonality among projects will be obscured, and the transfer
of project experience will be degraded. The framework should have two important
properties.

It should aid the project organizers and evaluators in the articulation o•fthe project
goals.

It should aid in the refinement of cross-project knowledge and facilitate the
introduction of new concepts and methods.

At this point the definition of the framework is speculative, and it has not been tested with
the classification of real projects. To fitcilitatc analysis at this early stage of analysis, I
restrict the framework definition to just the cnginecring/rcenginecring of the software
components in a system. The framework, however, should be extensible to include all
system components.

There arc four dimensions in the software engineering/reengincering framework.

Problem granmdariiy characterizes the problem to be solved by the project. It may
range from a full system to b) cnginccd to a single component to bc re-
engineered. Associatcd with granularity are effort, cost, and schedule constraints
plus estimates of the available experience. The objective is to associate experiencc
with some granularity measure so that, for example, experience with 10 effort-year
projects can be referenced by other projects of comparable size.

Problem level characterizes the level of problem addressed. I identify three levels.
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Know/edi.ýc oienwcd. lThis is the !.:%el just described as problem-oriented.
Its goal is to usC knowledIge t10 c 2tdC aspcCts of the process. Examples
include domain analysis, mcgaeipro iimning, and the operational approach.

Object oriented. Although this Is a product-oriented view, it is higher level
than that of the code. It maximizes the beinefit provided by encapsulationand information hiding. Projects that employ the Ada programming
language at the design level provide experience at this level.

Product oriented. This is the lowest-level of cnginecringl reengineering. Its I
goal is to produce components. and the emphasis is on the component, not
the domain activity it supports. Routine program maintenance is an
illustration of a project at this level.

The goal of software engineering should be to raise the level of the problem being
addressed.

Project motvation classilics the rationale behind the project's initiation, I ident ifV
five motivations.

Newlnrodu't. This is the creation of a new product.

Gorrecton. This is a modification of an existing product to correct a fault
or deficiency. It is similar to the error repair of corrective maintenance.

Adlaptation. This is the modification of an existing product that does not
alter the functionality of the product but that alters the product to
accommodate an altered environment (e.g., changes to a fire-control
soltware module to conform to an alterco radar interface).

Enhancement. This is the modification of an existing product to alter and
improve its functionality, pcrformance. etc. It is similar to perfective I
maintenance.

Experimental. This motivation is reserved for projects that experiment with I
a new technology or concept (c.g., the conversion of CSM-2 programs to
Ada). 3

Some projects may have more than one motivation, but the framework may permit
only one motivation for a project.

Supporting paradigm rclcrs to the problem-oriented and product-oriented
paradigms depicted in Figure 2. For the near term, the definition of the problem-
oriented paradigm is extended to include both projects that employ that paradigm I
and projects that have, as a primary goal, the building of a knowledge base for
potential use by a method employing the problem-oriented paradigm.
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The benefit of this tranicwork is that all project-s can be placed in a project space
that permits compaisons ol characteristics across projects. For exampl-, lines of code per
hour measures are like blood prcssure readings; without knowing the patient, diagnosis, and
therapy, a reading of15 5(LS5 is mcaningless. By tying a project to a node in the framcwork.
one has a baseline t.or comparing rCsulhs 1om dillerent projects or mlethods. One also can
use the framework to organize more dcetailed investigations. For instance. consider the
problem level dimension for rccnginccring projects.

Reengineering at the knowledge-ori,:nted level treats the knowledg~e in the system
documents as a unified whole that permits integra tion ofconcepts. reuse ofevaiuation tools
and techniques, and access to both current and historical design information. T'hercfore,
the framework at this levcl can consider questions such as:

What knowledge, documentation, simulations, and other tools are available for
systems, and how ac,:uratc, flexible, and transportable are they?

What knowledge is availablc in florms that can be processed and indexed within an
integrated database? What is the granularity of this knowledge, and can it be
adapted for processing by olf-the-shclf tools?

What research in knowledec representation, simulation, model execution, and so
on, would be applicable to adaptation in support of reengineering?

At the knowledge-orieaitcd level, the intent is to understand the domain so that a
transition plan (or bridge to the new technology) can be proposed. For the object-oriented
level, the goal is to evaluate the success in utilizing process-improvement techniques that
emphasize encapsulation, reuse, and components. In the forward engineering view, the
following questions can be answered:

How arc new development activities exploiting the features of Ada? Arc there
project evaluations that would aid other projects'? Are there libraries available for
exchange?

Are there measures for the dcgrcc of encapsulation and reuse employed? Are
there revised modcl% for the software process using these development methods?
How reliable are these measures?

For reengincering additional questions can be addressed:

To what extent has reengineering used an object-oriented level of abstraction?
What are the costs and benefits of this technique?

How is encapsulation employed in Ada-based reengineercd software projects?
What is reused and what is packaged for reuse by subsequent packages? Which of
the Ada features arc used in reenigineercd software? How (if at all) is the
documentation altered to accommodate the object orientation?
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At the product-oriented level, the primary concern is for the methods used in
transforming a product from one form (e.g., code in CSM-2) to another (e.g., code in Ada).
Of particular interest here are questions such as:

What criteria were used to decide to reengineer a component? To control and
evaluate the reengineering activity? To validate the reengineered product? 3
What technology and tools were used to reengincer the product? How was the
design knowledge captured? What level of abstraction was used to guide the
forward engineering process?

What was the motivation for the rcengincering (e.g., improved interoperahility,
hardware change, altered functionality)? Are there different reengineering I
methods for different motivations?

Thus, the availability of a sound framework not only guides in the analysis of project data,
but it also assists in the definition of new analytic efforts.

Summary I

This paper began with an examination of Navy' tactical systems and observed that
most future improvements will result from the evolution of existing systems rather than the I
development of new systems. The paper then addressed the engineering/reengineering
issues associated with this need for continuing evolution. The emphasis was placed on the
software process, and the discussion concluded that (a) the present paradigm was limited, I
(b) no near-term alternatives are available for complex Navy projects, and (c) there is
enough advanced knowledge to support the building of bridges from the present to the
future paradigms. An organizing framework was introduced that can guide in the analysis I
of data and assist in the formulation of new studies. I
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A View to an ImplementationI
Ngocdung T. Hoang Nicholas Karangolen
Naval Surface Warfare Center Trident Systems Incorporated
Silver Spring, MD 20903-SO00 Fairfax, VA 22030

I
I ABSTRACT

The representation of resources is a major issue in designing large and complex systems.
The ability to represent and analyze these resources early in the design process supports the
understanding of how resources are utilized, resulting in a major cost reduction in system
integration. This paper presents a method to generate the system's Implementation Capture View.
This view is defined as a documentation of the resources and their interfaces which make up the
system under design including the hardware, software, and human operators. The Implementation
Capture View also includes documentation of the resource selection and design rationale, and a

mapping from the Functional and Behavioral Capture Views to the resources in the ImplementationI Capture View.

I Introduction

Research on the implementation part of the system has been conducted and is being
continuously updated. Mostly the implementation issue is addressed as part of the design process,
and the representation of the system's resources is limited to a certain design scope. In their book
[Rum], Rumbaugh, et al., present an Object-Oriented based approach in dealing with the
implementation issue, but the method only emphasizes the problem of small-to-medium sized and
software-oriented systems. The same experience was found in the Structured Analysis method
(Youb.

The design of large, mission critical systems demands an understanding of all system
characteristics. The concept of using the five system capture views (Informational, Functional,
Behavioral, Implementation, and Environmental) to completely represent the system has been
introduced [Hoal. Though these system capture views were identified, much work will be needed
to specify each of their capturing formats. Also, the relationship between these views must be
identified such that the completeness of the design capture is fulfilled. The focus of this paper is
on the Implementation Capture View and the relationship between this "iew and the Functional andI Behavioral Capture View.

The Implementation Capture View documents the architectural descriptions and
performance capabilities of all hardware, software, and human resources which represent a
particular embodiment of the system under design. The hardware architecture describes the
physical resources of the system including the components, interconnection topology and protocol.
The software architecture describes the Computer Software Configuration Items (CSCI) and the
executable software tasks including the messages passed between modules. Finally, the
Humware Architecture describes the number of personnel required to operate the system under
various conditions and the level of training and experience for each operator. The hardware,
software and humware architectures are captured in a database which also includes the resource
selection, design rationale, and the traceability of system requirements through the design.
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The description of the resource architectures represents the principal products of the
systems engineering effort and establishes a baseline for the detailed design of the system and
operating concept. The architecture descriptions provide a basis for the development of system I
specifications (e.g., DOD-STD-2167A System Segment Specification (SSS), Software Requirements
Specification (SRS), etc.). These specifications in turn provide the project software and hardware
engineering teams with the basis for detailed system design. They also establish a basis for
development and analysis of a performance simulation for the system under design. Simularon I
provides the ability to identify potential shortfalls and errors in the system design early in the
design cycle when changes and corrections are considerably less costly.

Although the capturing technique is described as a series of steps or activities which are
presented in a particular order, this sequence is not intended to be a rigid formula for generating
the Implementation Capture View. The order of the steps represents a general flow of activity I
which is intended to be iterative both oetween steps and across the overall process. The followin
sections describe the information which must be captured and a preliminary process for
accomplishing that capture. It is important to note that this methodology only emphasizes the
generation of the Implementation Capture View based on a predefined Functional and Behavioral i
Capture View.

Identify System/Subsystem Function of Interest

The first step in developing an Implementation Capture View is to identify a complete
logical model of the system at some level of decomposition or design level of detail. Sub-systems
or components of a larger system can also be addressed; however, it is important to clearly define
the boundaries of the logical model to be implemented. This becomes particularly important when
the logical and implementation models of the system (or sub-system) under design are simulated.
Simulation of a given design requires explicit external interface definitions and an unambiguous
definition of the sim/stim requirements,

This step is a precursor to developing a function-resource mapping in that it defines a m
consistent and complete function listing for the system under design at a given level of detail. The
mapping may be accomplished at any level of functional decomposition; however, the functions
mapped must represent the entire system (or clearly defined sub-system). High or low levels of
abstraction (or some combination) may be used, however, no redundant function capture is allowed
(i.e., function and its children). An example of identifying a complete logical model at a given level
is illustrated in Figure 1. This example shows the example sonar problem functional decomposition I
down to three levels from the context diagram.

LSViL ImI I

II
I

Figure 1. Example Sonar System Functional Decomposition 3
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The sold lines connecting the functions represent the parentichad re i•sthpips in lhe

decomposition. The dashed lih-e encloses a set of functions which represent the entate systtn

Note that functions at two different levels are used to represen, the system. but no ov+erlap I, t

inclusion of a function's parent or child) is allowed Any overlap in mh s &lsect•o• of funrtiuorl I

represent the system would result in duplication and ambiguit'v in the associated %3ida, , rw flY

Resource Library

A resource library is a repository fto all candidate resources thji can be utd (' b 11 ir,!

the design process The resource library exists in the form of a database where alt cini~dati

resources are categorized from a very general class to a speci•i• type Wtile the des!TriptI n% and

performance capabilities of the off-the-shelf products are documented accordaig to heit

manufacturing specifications, the "to-be-designed" or modified resources ate listed bY thhea
expected values including their deign constraint. The multi level resource classification c•..s the

early predict . t of system performance without constraining the design to a specific type of

resource.

The resource library includes both *black box' resources and comfplex resoirer •iiacs blc,
resources are described in terms of their physical characteristic, performance- and other design
factors but are not decomposed into component parts This does not imply that black box

resources are simple, only that their componenms are not described inr the resource hbrary Cte,

resources are also described in terms of selected design factors but, in addition, include a
component level description which identifies the constituent parts of the complex resource and the
internal interconnection of the parts- Cross references are provided for component parts and
related sub-systems which are also found elsewhere in the resource ibrary A graphial user

interface which provides point and click access to the resource descriptions contained in the librarv

is envisioned to facilitate ease of use

The resource library can be used as a reference point for developing the system resource
architectures and must be established before the function-resource mapping process Figure 2
illustrates an z ample hierarchy for organizing the resource library used in developing the passive

sonar system example.

Resource Description

Regardless of its type or class, each resource description must be documented in detail

An appropriate format for captiring each type of resource should be generated to formalize the
representation. The format contains a number of fields which describe the resource in terms of

selected design factors, interfaces, and comionents (if provided) M,,itiple fields are provided for

each design factor allowing specified values, measured valuss, etc.. to be entered and maintained

Design rationales and alternative resources are also listed for alternate designs Figure 3 illustrates

the description of an example format for a general purpose CPU type resource.

II
I
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Filters
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eeemfuemerm I
Digitnl Signal Processor%

Graphic Display Processors
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I

Figure 2. Example of a Resource Library Organization I
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Multi-level Function-Resource Mapping I

The multi-level function-resource mapping provides a mechanism for allocating functions to
resource types and ultimately for mapping those functions indirectly to specific resources. The I
mapping establishes a strong link between the logical architecture and the resource architecture
and requires that (1) every function be fully implemented in resources, and (2) every resource be
traceable back to a required function (or a derived system service task).

Once a complete functional listing is established and a preliminary resource library exists.
the function-resource mapping can be performed in various layers or steps. The function-resource 1
mapping process is intended to be iterative and as such must accommodate numerous changes.
Although in the following discussion the mapping is shown in three layers, it can vary depending on
how much trade-off systems engineers would like to estimate . Opportunities exist at each step or
layer to optimize the mapping according to a variety of design factors. However, increasing the I
number of layer of the mapping will effect the development cost; hence, system engineers should
have an appropriate mapping plan to suit their requirement. At each level of mapping, analysis
techniques can be applied to verify the correctness of the design. Figure 4. illustrates the three I
level function-resource mapping of a passive sonar system.

The first layer of the function-resource mapping is an assignment of the system functions
to generalized resource classes. Each function is mapped to one of these generalized resource
classes which is then further refined by specifying a certain resource type from that class. For
example, the beamforming function is mapped to the general class of Programmable Hardware &
Software, which is further specified as special purpose custom beamformer hardware with I
beamformer microcode software.

The second layer of the function-resource mapping establishes a set of implementation
tasks which will be performed by the specific resource classes or types. Many of these 1
implementation tasks are directly related to the functions and may represent an implementation
specific functional partitioning, grouping or some combination of the two which reflects the
intended implementation. Other implementation tasks are created to provide required
implementation specific system services such as CPU operating systems, database managers and
network executives. This layer of the mapping provides the systems engineer with a mechanism
for repartitioning the functional decomposition for implementation without directly modifying the I
Functional Capture View.

The third layer of function-resource mapping is the allocation of the implementation tasks to
specific resources. At this level the description of the candidate resources are detailed enough

such that a framework for the system design can be constructed. In this layer of the mapping
individual resources are identified by hardware unit number, software/humware task and human
operator for each implementation task. Many implementation tasks require both hardware and
software resources. The static allocation of implementation tasks to specific combinations of
hardware and software represents an over simplification of the system's hardware-software
mapping. In a system with alternate program load options or in systems where software tasks are I
dynamically allocated to hardware this level of the mapping simply represents a particular instance
of the possible software hardware mapping.

I
I
I
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Resource Architecture

Resource architecture is the representation of system resources including their I
interconnection and utilization. With the multi-level resource description, the resource
architectures can be constructed at any mapping level. The accuracy of the analysis is influenced
by the abstraction level of the resource descriptions. When the mapping reaches certain levels of
detail, the developed architectures will not only reflect the resources which will perform the
required system's functions, but also the resources that provide the system support functions (i.e.
operating system software). In general, each architecture represent the network of the same type
of resources. In the computer-based system, three resource architectures, hardware, software,
and humware are usually addressed. The following examples of the resource architectures reflect
the third level of mapping that was mentioned above. I

The hardware architecture includes a description of the hardware components of the
system and their interconnection. Information about the hardware that was selected in the
function-resource mapping is put together in the form of diagrams and a data base. The diagrams
show the locations, components, and physical interconnection of the various hardware units. In
addition to the fields provided in the resource library, the hardware architecture data base includes
information on the selection rationale and requirements traceability for each hardware resource in
the system, the installed location (both in physical terms and in terms of the interconnection
topology with other resources), and a description of any messages sent and received by the
hardware which are specific to that hardware and not due to the software running on that
hardware (i.e., messages sent or received by the software which runs on the hardware are I
described in the software architecture). Additional fields are also provided for each design factor
which is chosen to describe the resource. This allows required and budgeted values of interest to
be captured. Figure 5. shows a candidate hardware architecture of the passive sonar system.

0 '1I
2 ,C

I

Figure 5. Passive Sonar System Hardware Architecture I
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Similar to hardware architecture, the software architecture includes a description of the
various software modules of the system. Each module is described in terms of the processing and
algorithms implemented, selected design factors addressing throughput requirements, memory
requirements, etc., and a description of the messages sent and received by the module. The
software architecture description is also intended to contain other information typically included in
a Software Requirements Specification (SRS) as defined by the DOD-STD-2167A DID #DIMCCR
80025A. The software architecture can be represented using various graphical forms including a
listing of source code modules with calling relationships, and message flow between modules, etc.
The software architecture database contains the necessary information to construct these system
software representations and to support modeling of system performance. Figure 6a. shows an
example format of the software architecture of the detection function and figure 6b. shows a
description of a software task within that architecture.

13 -Do * N 
1 4, -

: ~ ~ ~ O SEW 24.0 1 km

FIeon•igure.i 6a.~ S~oftaeAcietrfteDtcinFnto

SWR TASK• 1403• S...m 51I W TAUI 01

O•De M A"41-01 011

COPY ~ ~ ~ ~ ~ ~ ~ ~ 4 AVIAICT DI -~ OTPI i ,W 641-f

231 T 1 t O

W ,?Ta labl a.. #1 .01 100 '

Fiur 6a.SotwreArhitctreofth Deecio Fncio

COPY AVAILABLE TO0 D-TIC DO EM NOT PE Fa•T FilUL,,x .. , .. . •.L', , .•

231



I
I

NAMEITITLE: SN Took 161 I Detoct.fn C&0
SUBTA.SK: mo

INPUT MESSAGES:

S0.ud M_ Op 4

S•4L•4xAppkasenM *

OUTPUT MESSAGES:

Deatd Sel•ct, MeO

Aud.o_SelectoMagOeP2
Anhdy"_Cw•ddr_Msg
SknortApIk-,onM*g

TASK DESCIJPTION;
This to Pcod te mechwrem for detediv•t gfrwrttetcr by the wayn. to be

formtneed for eveluat~or aed e" "vzed,

DESIGN FACTORS: I
Procein gP RPeqwred: 0.42 MIPS
Memory RePwed: 160 Kiyte'
Pnenxty; 41
Aeeporae Tw'rt: 100 m"c

Figure 6b. Description of the Detection Software Task

I
Finally, the humware architecture describes the number and type of personnel (i.e., training,

and experience levels) required to man the system under various operating conditions. In the case
when human function is a large part of the system under design, the organization chart is
considered as part of this architecture. Organization breakdown and information interchanges
between different departments are captured with a similar format that was described in the capture
of hardware or software. Figure 7. illustrates a human resource architecture of the passive sonar
system and an example description of one particular operator, detection operator.

Conclusion 3
The above discussion is an attempt to represent the implementation aspect of the system

and its relationship with the functional aspect. The issue here is not the preference of one notation
over another, rather, it is the need for a robust technique to describe system resources from a

detailed specification of a simple component to a high level abstraction of a complex part. With
the flexibility to maintain multiple design options and the ability to analyze these options, systems
engineers will have more confidence with their design. There is no doubt that the above
techniques should be automated; however, early commitment in certain CASE tools or technologies
can restrict the intention of the methods. With the intention to support various types of analysis,
the implementation representation will also face the problem of how to automatically transform its
capture information to different models of analysis.

2
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The Environmental Capture View: Addressing External Factors in
Capture and Analysis of Large Scale Complex System Design

Nicholas E. Karangelen

Trident Systems Incorporated
Fairfax, Virginia 22030

- ABSTRACT

The capture of large complex real-time system designs requires organization and representation of a
large diverse body of technical information and data. While most system lesign capture or
specification techniques address the external interfaces to the system under design, no formal,
structured approach for capturing the full spectrum of external and environmental factors which
impact the system design has been established. This paper addresses the preliminary definition of
an Environmental Capture View within the context of a multi-domain design capture and analysis
methodology. The elements of the Environmental Capture View are intended to provide a
structured representation and organization of the following types of information: operational
scenarios, system concept of operations, environmental conditions, external systems and
interfaces, test strategies, maintenence and logistics considerations, and other external factors
which impact the system under design. Candidate methods for representing and organizing
selected elements are discussed with examples along with suggestions for the direction of future
work in this area.

INTRODUCTION

The capture of large complex real-time system designs requires organization and representation of a
large diverse body of technical information and data. Exisiting systems engineering tools and
methodologies [1], [21, [3] offer multi-domain approaches to representing key aspects of the
system design such as systems functions and data, hardware and software architecture. While
most system design capture or specification techniques address the external interfaces to the system
under design, no formal, structured approach for capturing the full spectrum of external ind
environmental factors which impact the system design has been established.

I This paper addresses the preliminary definition of an Environmental Capture View within the
context of a multi-domain design capture and analysis methodology as described by N.D. Hoang
[4]. The five capture views defined within the methodology are briefly summarized below to
provide a context for the main subject of this paper which is definition of the Environmental
Capture View. The essential elements of the Environmental Capture View are defined herein, and
several candidate methods for representing and organizing the information for selected elements of
the Environmantal Capture View is proposed.

FIVE VIEWS OF A COMPLEX SYSTEM

The central element of the multi-domain design capture and analysis methodology is definition of
the multiple design domains or Capture Views of the system which address the principal system
design perspectives: (1) Environmental, (2) Informational, (3) Functional, (4) Behavioral, and (5)
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Implementation. The five views partition the system design into logical segments corresponding to I
key perspectives of the system design. The partitioning of the system design capture into these
five Capture Views has evolved beginning with the NAVSWC ASW Methods and Tools Group
(5] and has been described in its present form by N. D. Hoang (4]. The five Capture Views arc I
briefly summarized in Table 1.

Table 1
FIVE VIEWS OF A COMPLEX SYSTEM

DESIGN VIEW VIEW OBJECTIVES DESIGN ELEMENTS I
Environmental View - Establish Conditions and Events • Environmental Conditions and

Constraining System Operations Event Descriptions
• Specify Performance MOEs and - External System Descriptions I

Conditions of Measurement - System Initial Conditions
- Measures of Effectiveness

Informational View • Characterize System Concept of - Entity - Relationship Diagrams I
Operations - Attribute/Method Descriptions

- Represent System Component's
in Abstract Terms

Functional View - Define System Functions and - Function/Data Flow Diagrams
Decompositions - Process Specifications I

- Specify Data Flow Requirements • Data Dictionary

Behavioral View * Define System Stptes and - Control Flow Diagrams
Triggers • State Transition Diagrams

- Specify System Behavior • Control Specifications
Characteristics g

Implementation View * Define the Physical Hardware, - Hardware, Software and Human
Software and Human Resources Resource Descriptions
Which Make up the System - Performance Parameters and

- Specify System Physical Resource Characteristics 1
Interconnectivity . Function-Resource Mapping I

An attempt to address all of issues associated these views simultaneously without a structured
methodology is a multi-dimensional problem of a magnitude which exceeds the capacity of most if
not all systems engineers. Each of these views provide key information concerning particular
aspects of the system under design. Taken individually the views allow the systems engineer to
partition the design and analysis of a proposed or existing system into manageable parts.

The capture approach for these design domains or views share a common hierarchial structure I
which supports management of the magnitude and complexity associated with a large system
design. Flat representations of complex system designs rapidly become unwieldy as the design
detail unfolds. A hierarchial structure allows the system views to be represented at various levels I
of detail from a broad top level which encompass the breadth and scope of the system and its
external interfaces to very low levels which describe the details of a particular segment of the
system design.
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Each design view represents the system from a particular perspective and highlights different
aspects of the desigt,, however they are not independent. The views represent different aspects of
the same system ana therefore must be consistent. The features of a particular view can directly or
indirectly impact, to a greater cor lesser degree, the design in another view depending on how the
relationship between the views is specified.

SYSTEM DESIGN CAPTURE AND ANALYSIS AUTOMATION

Successful employment of a multi-domain design capture and analysis methodology in supporting
a complex system design is largely a function of the degree of mechanization which can be
achieved. The size and complexity of large scale advanced computer systems render manual
application of any design process or method unusable. Considerable potential benefits can be
gained from automation which supports a disciplined structured capture of the initial iteration of a
system design and subsequent editing of that capture. Further significant efficiencies can be gained
through automated consistency and completeness checking within and between the five system
views which represent the captured design. However, in light of the overwhelming systems
engineering task represented by analysis of an advanced complex system design, the most
significant productivity gains are in automated support for design simulation and analysis within an
integrated and highly automated design capture and analysis environment.

DEFINING THE ENVIRONMENTAL CAPTURE VIEW

The Environmental Capture View is defined as the structured representation and organization of the
following types of information: operational scenarios, concept of operations, environmental
conditions, external systems and interfaces, test strategies, maintenence and logistics
considerations, and other external factors which impact the system under design. The information
captured in the Environmental Capture View is necessary to address important issues of a system
under design but may not typically be included in the design itself. The key elements of the
Environmental Capture View are listed below with a brief description. The following sections
address each of these elements in some detail including selected examples.

Operational Scenarios describe situations and sequences of external events which the
system must address. The most stressing cases and most likely cases are identified and
described from the potentially large spectrum of possible operational scenarios.

The Concept of Operations describes the proposed approach for operation of the system
under design from the operators perspective.

External Systems and Interfaces to the system are captured including information necessary
to develop an external system model to support system design simulation and testing.

The Environmental Conditions under which the system must operate may include
geographic, meterologic, electromagnetic, and acoustic environmental factors as well as
others associated with the systems operational surroundings.

System Test Strategies for testing system compliance with the top level system
requirements are captured including system performance metrics, system test approach and
test procedures, system Sim/Stim, and test instrumentation.
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Maintenence and Logistics considerations associated with the system through its life cycle
which impact the design are also captured.

Other External Factors which influence and affect the system under design are also I
documented such as design constraints and guidance imposed by the program development
sponsor. 1

The elements of the Environmental Capture View including the external interfaces and
environmental conditions are desribed and captured in terms which are compatible with the
Informational, Functional, Behavioral, and Implementation Capture Views such that the
consistency across the various capture views can be analyzed. These descriptions also establish a
basis for development and analysis of a performance simulation for the system under design.
Simulation provides the ability to identify potential shortfalls and errors in the system design early I
in the design cycle when changes and corrections are considerably less costly. The descriptions
also provide important information needed for system integration and testing as well as for
development of system external interface specifications.

It is important to note that this paper does not address a particular systems engineering design
process. Instead, it describes a technique and methodology for capturing the Environmantal
Capture View of a complex system design reguardless of the systems engineering process model I
employed. This paper describes the current evolution of the Environmental Capture View and
represents a snapshot of an ongoing effort to formalize the elements of the Environmental Capture
View and the techniques for documenting those elements. Examples extracted from a passive I
sonar system sample problem [6] are employed in this paper to illustrate the capture techniques and
to describe the rational for the methods employed. '

OPERATIONAL SCENARIOS I
This element of the Environmental Capture View identifies and describes the operational scenarios
which are expected to be encountered by the system under design both in the near-term and
far-term over the system's projected life. The capture of operational scenarios is intended to
establish bounds on the spectrum of possible operational scenarios, identifiy key scenarios which
represent the most likely and most stressing cases for the system under design, and describe
selected key scenarios in detail. These key scenarios are captured in sufficient detail to establish
test cases for system performance simulation and analysis.

Scenarios captured using the approach described in this section could be maintained in a scenario
library and reused for multiple system designs where applicable. An example of where this I
approach would be particularly usefull is the set of seven scenarios promulgated recently by the
U.S. military Joint Chiefs of Staff (JCS). This set of seven scenarios has been approved for use
in establishing system develnpment guidance and provides a vehicle for evaluating the warfighting
utility of existing and proposed systems.

2
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SPECTRUM OF OPERATIONAL SCENARIOS

The first component to be addressed in capturing the operational scenarios is a mechanism tor
bounding and describing the wide spectrum of possible operational scenarios for the system undcr
design. The set of possible scenarios is, in general, very large and can not be efficicnrlv
represented by a list of scenario cases. The approach we will employ here is to establish the key
parameters which characterize the scenarios and then to establish the range of possible cases for
each parameter. These parameters provide a mechanism to characterize entire classes of scenarios
and to identify the most likely and most stressing cases to support system simulation and analysis.

Operational scenarios can be characterized in many ways sich as the geographic setting,
environmental conditions, the objectives of the system users, the ii tensity of operations, etc. A set
of parameters must first be identified and defined which describe the essential elements of an
operational scenario for the system under design. These paiameters should be selected to be
orthogonal if possible to allow any combination of the various paramenters to be selected. A range
of values or cases for each scenario parameter is also identifed. The goal is to establish a set of
scenario parameters and parameter values which can uniquely characterize any possible scenarin
which the system under design may encounter.

A simplified set of scenario parameters for the passive sonar system sample problem is illustrated
below. Five parameters have been identified to describe the spectrum of operational scenarios
which the sample passive sonar system is intended to operate and which can be used to uniquely
identify a particular scenario:

(1) Tempo of Operations - Defined as the level of operational intensity associated with the platfonri
mission and the system's role in supporting that mission. The range of possible cases for the
Tempo of Operations scenario parameter is illustrated as follows:

Low - Independent transit in international waters
Moderate - CVBF screening operations in open ocean
High - Threat submarine tracking operations

(2) Level of Conflict - Defined as the combat readiness or alert state of the platform and related to
the likelihood of hostile actions. The range of possible cases for the Level of Conflict scenario
parameter is illustrated as follows:

Peacetime
Crisis Response
Transition to War
Regional Conflict
Global Conventional War

(3) Environmental Acoustic Conditions - Defined as the description of prevailing environmental
conditions which affect acoustic sensor performance. A simplified range of possible cases for the
Environmental Acoustic Conditions scenario parameter is illustrated as follows:

High Ambient Noise/High Propagation Loss
High Ambient Noise/Moderate Propagation Loss
High Ambient Noise/Low Propagation Loss
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Moderate Ambient Noisc/l hgh P arctuj m x 1 , l'-,
Moderate Ambient NoieiMcIer eIratv Pmopl igno,-,
Moderate Ambient Noise/Lw Pro ag olawo: I
Low Ambient NoieM r ligh Propagation 1,os'0,
Low Ambient NoiseiModerate Propagation l.(-,
Low Ambient Noise/I.w Propagatio.n I ,J)Sv

(4) Acoustic Contact Density - Defined as the number of ot 11ac1t• 1n•s i ti:z:< ,c .
of the system. A simplified range of po.-xobk cases fto tLe A,.•uiti, , )c i'. ,, c0 c
parameter is illustrated as follows:

Lo)w - less than 3 simultaneous acous.tic c•inti• ts
Moderate - 3 to 10) simultaneous acousuic it:t,, B
I ligh - 10 to 15 simultaneous acoustic cýs::,v-
Very ligh - greater than 1 5 simultaneous a, usrk contacts

(5) System Operating Mode - Defined as the current readiness (i . f the sy'stcm A simplhfid
rarge of possible cases for the System Operating Mode s•-ena!if ,-:"cr i, ilustraied a.1 follu s 5

Full-up - All functional capahili:.-, ,vailable
Degraded MIxle - Only deteý,,on and limited 1 c0 ,11 ' r10' I' I

The scenario parameters and the ranges of possible cases or values for each sccnarimo paramosc ,u-
then configured in a scenario matmx which allows the usei to suimnarize the spectruil )t" ps"SINh-
scenarios in a compact form, Individual scenarios can easily te e\rracrcd forn the sccnarit rntmrrok
by selecting one value or case from each of the scenario parameters in the scenario matrix This
also creates a short hand method for labeling scenarios. £
Tempo Low Medium High
o r

IIOpera titons

Level Pecaetimc Crl-i5 Tra..i~ir; P~ cg. 1- c

Con r / Id WU t ,

Environmental High AN High AN High AN Mod AN Mod AN Modl AN [,,'A AN ),L'. AN I AN
Acoustic High PL Mod Pt ,•, U t. IL High Pl, Njw l,•,t JA -.',h P1t lgh Pi.ý [~T P .. •It.
Conditions

Acoustic Low Moderate High Very High

Contact I
Density

System Full-up D)cgradrd NModc
Operating I
Mode

Figure 1 Passive Sonar System Example Scenario Matrix i
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The scenario matrix for the passive sonar system is illustrated in Figure 1. Even in this simplified
example the number of possible scenarios described by this scenario matrix for the passive sonar
system totals 1080 (3x5x9x4x2). Describing in detail 1080 scenarios is not a reasonable approach
to take nor is it necessary. The next two sections describes a method for selecting a small subset of
the possible scenarios which represent the most likely scenarios and the most stressing scenarios.
These few selected scenarios will then be described in detail and will form the basis for system
analysis and testing.

MOST LIKELY SCENARIOS

The set of most likely (or most common) scenarios which the system under design will encounter
is derived by examining the spectrum of possible scenarios as embodicd in the scenario matrix.
The most likel: range for each of the scenario factors is determined and then the most likely
combinations of the parameters are identified. Understanding the set of most likely scenarios
represents an important aspect in developing the system design. These scenarios also define one
set of test cases which can be used to simulate and analyze the system under design.

Tempo Low Medium High

of
Oper at ions

Level Peacetinte Crisis Transition Regional Global

o f R•esponse to Conflict Conventional

Conflict War War

Env HighAN HighAN HighAN ModAN Mod AN ModAN LowwAN L%% AN LowwAN

Acoustic HighPL ModPL LowPL HighPL ModEL LowPL HighPL ModPL LowwPL

Conditions

Acoustic Low Moderate High Very High
Contact
Density

System Fuil-up Degraded Mode

Operating
Mode

Figure 2 Scenario Matrix With Most Likely Cases Highlighted

Based upon combining the most likely scenario parameters identified in Figure 2, the following
two scenarios represent the most likely scenarios for the sample sonar system:

Likely Scenario #1 - A moderate tempo of operations in a peacetime situation in a moderate
acoustic environment with moderate contact density and the system in the full-up operating meode.

Likely Scenario #2 - A moderate tempo of operations in a crisis response situation in a moderate
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acoustic environment with moderate contact density and the system in the full-up operating mode.

MOST STRESSING SCENARIOS I
The set of most stressing scenarios which the sample passive sonar system will encounter is also
derived by examining the spectrum of possible scenarios. The most stressing cases for each of the I
scenario factors is determined and then the most stressing combinations of the five parameters are
identified. Understanding the set of most stressing scenarios represents an important aspect in
developing a system design which is operable and meets the intent of the system requirements.
These scenarios also define a second set of test cases which can be used to simulate and analyze the
system under design.

Tempo Low Medium Higho' f
Operations

Level Peacetime Crisis Transition Regiotal Global

o f Response to Conflict Conventional

Conflict War War I
En v High AN High AN High AN Mod AN Mod AN Mod AN Low AN Low AN lUw AN

Acoustic High PL Mod PL Low PL High PL Mod PL Low PL High PL Mod PL Low PL I
Conditions

Acoustic Low Moderate High Very High

Contact
Density 3
System Full-up Degraded Mode

Operating
Mode

" -- -- 3 Scenario Matrix With Most Stressing Cases Highlighted 3
Based upon combining the most stressing scenario parameters identified in Figure 3, the following
scenarios represent the most stressing scenarios for the sample sonar system:
Stresing Scenario #1 - A high tempo of operations in a regional conflict situation in a high AN/PL
acoustic environment with very high contact density and the system in the full-up operating mode.

Stresing Scenario #2 - A high tempo of operations in a transition to war situation in a high AN/PL
acoustic environment with very high contact density and the system in the full-up operating mode.

Stresing Scenario #3 - A high tempo of operations in a regional conflict situation in a high AN/PL 3
acoustic environment with very high contact density and the system in the degraded operating
mode.
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Stresing Scenario #4 - A high tempo of operations in a transition to war situation in a high AN/PL
acoustic environment with very high contact density and the system in the degraded operating
mode.

SCENARIO DESCRIPTIONS

The system scenario descriptions are captured in a graphic and textual format which is tailored to
support documentation of the information and data required to fully describe the conditions, events
and other features of a given scenario. The following outline provided in Figure 4 represents a
preliminary baseline format for capturing scenarios associated with large scale military systems.
This baseline format is intended to be tailored for use in specific programs. An example scenario
description is currently being developed using this approach for the sample sonar system described
in reference 5.

1.0 Introduction

2.0 Scenario Characterization and Definition of Terms

3.0 Mission Description Summary/Mission Success Criteria

4.0 Geographic Area of Interest/Assumptions

5.0 Own Force Organization, Platforms, Objectives and Operations

6.0 Threat Organization, Platforms, Objectives and Operations

7.0 Environmental Conditions

8.0 Initial Conditions and Chronology of Key Events

9.0 Glossary

10.0 References

Figure 4 Scenario Description Contents

CONCEPT OF OPERATIONS

The system concept of operations describes a high-level philosophy for the conduct of specific
operations employing the system under design. During the early phases of the system
development process, the concept of operations description is developed such that it applys to a
broad spectrum of possible system implementations and is not constrained by a specific candidate
system design, personnel manning plan, hardware/software implementation or existing system
operator-machine interfaces. The focus is on describing the concept for mission execution using
the system at a high level without reguard to a specific physical system implementation. As the
system design is developed over time, the level of detail captured in the concept of operations can
then be refined to address implementation specific design features.

Complex systems, and in particular military systems, often are designed to address a wide
spectrum of operational scenarios and therefor may have a correspondingly robust concept of
operations. The concept of operations for a complex system may have several variations which are
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a function of the particular type of scenario which is being addressed. The system concept of
operations as captured in the Environmental Capture View is not intended to address the entire
spectrum of possible operational scenarios but will be described for a particular scenario or class of
scenarios. In general, one basic concept of operations associated with a selected scenario (e.g. one
of the most likely or most stressing cases) will be captured with variations to describe the principal
differences in the operations for the key scenarios under consideration (e.g., the most-likely and
most-stressing scenario cases).

The technique currently identified for capturing the system concept of operations is a structured
english text document augmented by time lines which capture control and display utilization and
operational sequence diagrams. The outline for the concept of operations document is provoded in
Figure 5. As with the scenario description document, the format is intended to be tailored for use
in specific programs.

1.0 Operator Machine Interface Configuration Description

2.0 System Modes of Operation

3.0 Operator Relationships and Activities

4.0 Control and Display Utilization

5.0 Operational Sequence Diagrams

Figure 5 Concept of Operations Document Outline

Additional work is required in this area to identify alternative formal methods for capturing system
concepts of operations which may be more compatible with: (1) future design capture automation
techniques; (2) graphical system representation and display methods; and (3) requirements and
design rational traceability techniques.

EXTERNAL SYSTEMS AND INTERFACES

This element of the Environmental Capture View identifies and describes the external systems
which have some relationship to the system under design as well as the external interfaces from
these external systems to the system under design. The external interfaces between the system
under design and the natural environment (e.g. temperature and pressure transducers) and are also
described. Ile principal purpose in describing the external systems is to provide a means for
simulating their behavior and modeling their interfaces to the system under design. This
information is necessary to create an external model which can be used for the purpose of modeling
performance of candidate design implementations during early design phases or for interface
stimulation during testing of the system.

This element of the Environmental Capture View also serves to summarize the system boundaries,
exterrial interfaces to the system, and describes how the system under design fits into the larger
architecture and organization of the higher entity of which the system is a part. It does not address
the internal structure of the system, but serves to define the system's interfaces and relationships to
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other systems and activities which are considered outside the scope of the system under design. It
also describes and defines the objects external to the system and the behavior of those objects in
relationship to the system under design.

Information captured concerning those systems which are external to the system under design is
driven by a spectrum of activities from providing a means for simulating external system behavior
in support of modeling the performance of candidate system designs, through simulating and
stimulating external interfaces during testing of the actual system during integration. The
complexity of an external model developed as a "simulation harness" is driven by the level of
fidelity required to stimulate the internal model of the system under design. The external model
should support the system design process from an early top level representation to a very detailed
level of design. The capture techniques employed to represent the external systems must therefore
be flexible and support evolution from an abstract level to a very detailed level of fidelity. The
capture approach should also be compatible with the approach employed to capture the system
under design to ensure that internal and external simulation models created from design capture
activities are easily integrated.

Based upon the forgoing considerations, an obvious candidate approach for capturing external
systems is to employ the same techniques used to capture the system under design summarized
earlier in this paper. While this would provide the extensibility and compatibility features needed,
it would also be costly to create the five capture views for each external system. This reasoning
has led to tentative selection of the Implementation Capture View as the basis for capture of
external systems. It is important to note that the external interfaces of the system under design
(which are considered part of the system under design) are intended to be captured using the full
five capture views. Further investigation is required to determine if an adequate external model
representing the external systems can be constructed from the information contained in the
Implementation Capture View.

The current method for documenting the Implementation Capture View is described by N.D.
Hoang [7]. This approach for capturing external systems would potentially provide the benefits of
using a common approach for design capture and modeling at an acceptable cost. Some extensions
and modifications to the Implementation Capture View as currently envisioned may be required and
will be identified as this work continues. An example capture of external systems using this
technique is currently being developed using this approach for the sample sonar system described
by Karangelen and Hoang [6].

ENVIRONMENTAL CONDITIONS, SYSTEM TEST STRATEGY, AND SYSTEM
MAINTENENCE AND LOGISTICS CONSIDERATIONS

These three elements of the Environmental Capture View include additional key information which
can have considerable impact on the system under design. The environmental conditions
represented by prevailing meterological, electromagnetic, and acoustic conditions the is often a key
factor in the performance of sensors such as radar and sonar, and in the performance of
communications systems. The system test strategy and system maintenence and logistics
considerations can typically impose design constraints which must be identified early in the design
process to aviod the potentially high cost of back-fitting test and maintenence capabilities in the late
stages of system integration and testing. To date no formal method for the capture of these
elements of the Environmental Capture View have been established. Exisiting techniques for
development and capture of system test strategy and system maintenence and logistics
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considerations are currently being reviewed. No formal capture techniques for environmental
conditions in general have been identified to date however, considerable data is available form a
variety of sources for specific classes of systems such as active and passive acoustic underwater
sensors, as well as land and air based radar. One potential method for organizing and capturing the I
environmental data is based on categorizing the various environmentally dependent technologies
and establishing a format for each specific technology area (e.g. radar, sonar, etc.)

FUTURE WORK 3
This paper describes a preliminary description of an Environmental Capture View within the
context of a multi-domain design capture and analysis methodology. Further refinement of the
techniques for characterization and selection of operational scenarios, description of system I
concept of operations, and capture of external systems and interfaces is required to: (1) address the
employment of automated design capture and simulation methods, (2) enhance compatibility of the
Environmental Capture View with other design views, and (3) to provide a mechanism for
traceability of system requirements and design rational. Capture techniques have yet to be I
specified for environmental conditions, system test strategy, and system maintenence and logistics
elements of the Environmental Capture View. ,
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1 Introduction
A primary concern in the development of large-scale, real-time, coi Iplex. coniputer-intensive
systems is ensuring that. the performance of the system meets the s1 ci ie(l requirements.
As part of the system development and maintenance process, maiy decisions and trade,
offs are made that affect a variety of components of the system. Furlher, the requireinents
themselves evolve and undergo many changes during tile development process. In such a
context, it is essent ial to maintain traceability of requirements to various out l)tl s or art ifacts
p)roduced during the svsliems design process, to ensure that the syslen IiWets ill(i current
set of requirements. Maintaining consistencv between tie requireineilts and lie1 design is
especially critical in situations wi ere, all organization relies upon outIside co(lractors for
developing svsl ,I:-, IlavilŽ a systeialitc way of validating that every crquiremel is is u bY hI
the design is imporlail, 110 only to ensure that the system performns correctlvy. um also io
determine whether ('contract ual o0l)]igations have been met.

It, should be noted that throughout this paper, the term dcsign is used to refer to an\Y
activity that leads to the creation of artifacts. Potts and Bruns [I] nole that (eveil lhe early
Phases of the systems development irocess Involve tile creation of inteilnediate ail ifacts and
the term design could be used to denote such activities as well.

A comprehensive scheme for maintaining traceability, especially for coniplex. real-ti1M
systems, requires that all systemn components (not just software). creal ed at various stages oftile development process. be linked to lhe requirements. These components include hardware.

S softwvare, humainware, nanuals, policies and procedures. In order to achieve this objective.

it is essential that traceability \be maintained through various phases of Ihe systens devel-
opment process, from the requirements as stated (or contracted) by the customer. I hrough
analysis, design. implementation and testing to the final p)roduct.

In the next section, we discuss past research and current. tools for traceabilitiv. Next.
we discuss our al)proach towards developing a model of traceability. \\W, describe an initial
empirical study and preliminary results that are being used in the design of future work.
Finally, we present an example of a coml)lex traceability relationship) based on a model
(design) rationale in requirements engineering and address some of the issues raised in our
study.
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2 Background

2.1 Definition of Traceability I
A variety of definitions of traceability have been proI)osed in the literature d4jhp,,iidg oilI
the intended use of traceability information. Greenspan and McGowan [2] providh a generic"
definition of traceability: traceability as a property of a system description teclini(iti that
allows changes in one of the three system descriptions- requirements. design specifical ijn.
implementation - to be traced to the corresponding portions of the other (hes:ripi ions. 'h'le(,
correspondence should be maintained thought the lifetime of the system.

Schneidewind defines traceability as the ability to identify the technical inforlmationl whichi
pertains to a software error which has been detected during the maintenance phase and D
thereby trace the error to the applicable design specifications and user requirements [:31, -.

The need to provide traceability is recognized in most critical standards governing Ite ,Ic-
velopment of software for the U.S. Government. For instance the DoD-STl)-2167.-\ specifies
that "the contractor shall document the traceability of the requirements allocated fromi lie
system specification to each Computer Software Configuration Item (CS(1). it, (_'olliiter
Software Units (CSUs). and from the CS_ level to the Softwae Requirement s Sp)tifiCat iom.
(SRSs) and Interface Requirements Specifications [5],[6)". An elaboration of this require-
ment states that "the Software Design Docunent describes the allocation of re(jimirelnenl• I
from a CSCI to its CSCs and CSUs[6].

It should be noted that even this elaboration is not specific aI)otit lhe lallt •i of thte
linkages to be maintained and leaves th, interpretation of the meanings of suchi linkages I
to the users. Unless the semantics of the linkages are clearly specified. IIhe cxi- \ece of a
link between a CSCI to its CSCs could denote one of several possibilities iMcluding : lie
requirements have been completely allocated, some of the CS(Cs satisfy ,

retluirements, it is possible to verify that hle requirements have been coni)lel.ely sat isfied.
Many of the aboove definitions are geared toward maintaining traceabilit v ill software

components. Our goal is to develop a model that will address traceabilit v issues at lIe level
of systems design, relating requirements 1o all system components. Furlther. such a mnodel
should not only discuss the kinds of linkages or relationships that should be niai ained.,1 b3ti
also the reasoning that can be performed with such traceability inftorimatioli.i

2.2 Why Traceability? I
As discussed earlier. requirenients traceabililY is iniperative to ensu're t'e closue of, allI
systems components [7]. e

As requirements tend to evolve over the long life of large scale systems, nmailitaiiiing
systems to meet such evolving needs is critical. As large scale systems are coni)osod of'
interdependent components and as the design process "spreads information*, even small I
changes at the level of requirements may lead to major changes to various parts of the Is*stem.
Requirements traceability will go a long way in alleviating the problem of n maintenance
by facilitating the identification of interdependencies among components and localizing the
effects of changes made at various levels of systems design. Further. if the rhataio)shiips
b)etween design and the requirements can be maintained, any change to he designi can I)e
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analyzed to determine if the system still meets every' requirement. SI'IICe (!Very I-e(IuHIre11IAi
that is affected by a part of the design can be idenitified, the side effects of chaniges cati be
contained and av'oided.

Arguing for the imnportance of traceability, Choi and Scacchil stale thiat the correctine.ss
of a configured software description (i.e., a software system's life cycle (lescript ioi is) ca~ii be

formalized in terms of their consistency, completeness and traceability [].

Traceability is required irresp~ective of the software design methodology or t he hardware

software architectures used in a. project . Somne methodologies provide tight. relat iounships
between comlponents p)roduced during various stages of the design process and] hence auito-
ma~tica~llv provide traceability. An extreme examn-ple is the development of softwvare based on
form-al1 specifications. The formal requiremients are transform-ed into execu tablle systcinus'. The
transformation history provides tr'aceability between formal requirements an~d the execuit~able

system. Automnated code generation using a. fourth generation language is an example of' such
*automatic" traceab~ility which is limited in scope.

A recent workshop on reuse in p~ractice concluded that, anj ein iron ineiit to facihlate reuse
must support automatic traceability of a. component through the requirement-s to the exe-
cutablle com-ponienits.. Traceability is iniruýrtant for user linderst~a.11lng of the c'11Ollrjoeult-s

design and Imp~lemientation. since ýoptllres the context. and thle (oust rainits of 111 d (evel-

opment process anid that thiis 11 ' 01 alndiiqg assists the user of' a comonient0 'IiIt inuýM iiI Ii III

aniother situation [9].

3 T-aceabi~ity Tools

Initial work on traceab~ility concentratedl on providing document traceability. D~ocumuent
t~ra~ceab~ility determines the existence of relation1ships betweenl two (loculileit coin poncinl s

ARTS 112] is amiong the earliest systemis to capture and~ use of t iaccabilitY v ifi-inratiou1.
The current commercial state-of-the-art requirements traceabilitY tools (i.e.. (, lpllovyed iin
tools su'~h as Teainwork/RQT. R-trace. RDD-IOO) simply link requtiriIC ements to ipieces of thle

dlesign audi implelment~ation. Current. tools, simillar to ARTS, tend to focus oil thIe (dal abase
managem-ent issues, rela ted to ma~intain ing links between requ irelnicnl s and val-01. rioi is or
nients of the systenm. An area. that Is not adequately addressed bY current.t approachecs Is I hie
capt tire a~nd use of the semantics of the relationships. For instance, t hese technique., (10 not
adldress the issue of' representing how the requirement is satisfied bY Hiew designi. but ju1st
facilitate capturing the fact tha~t somei relationship exists.

Another shortfa~ll with today's traceabilitv tools is that1, t hey lack the abill to t 01race

back fromn the actua~l pieces of design anid im-plementation to the rec-quirement~s ..- lthlougig
some tools such as Teaiimwork/R.QT and P-trace allow the user to trace from requilremntcls
analysis tools such as Teamwork and Software Through Pictures, th1ey (10 not. have a methlod
for tracing fromn a particular piece of hardware or humanware b~ack to the re(Juireinens. T'his
capability would lbe ext reniely useful in perform-ing system-s maintenance.
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4 Towards a Model of Traceability

The need for better understanding of traceability is widely recognized. As discussed iII I
the previous section, maintenance of traceability is also mandated by several standards.
However, the precise definition of the kinds of traceability linkages or relationships that must

be maintained is currently lacking. A major challenge in this research is the development I
of a model that represents and provides the semantics of various traceability linkages or

relationships between requirements and system components.
There are a variety of stakeholders involved in the systems development process. includ-

ing project sponsors, project managers, analysts, designers, maintenance personnel. testing

personnel, and end users. A basic premise in our research is that the developlient of a I
model of traceability could be geared towards the needs of these various stakeholders at

various stages in the systems development process. The first phase of our approach to this

problem has been an empiricai one. We have conducted an initial empirical study to explore I
the traceability needs of various stakeholders. The results of this study are being used in

designing a. comprehensive study involving stakeholders in large scale. complex. real-time
systems development efforts. In this paper, we present the details of the initial sludv and I
some preliminary findings which will be explored in the follow-up studies.

Study Design Our data collection strategy in the initial study involved a two-plroiged I
approach: focus groups interviews for idea generation &_ evaluation and protocol allIal]sis of

problemn solving behavior.
Subjects I
The subjects in the study came from a Masters program in Information Technology at the

Naval Postgraduate School. The study was conducted after the students had completed the

analysis, design and implenmentation of an information system based on a case study. Tlie

case study was developed based oil a real-life large scale project and had been successfiillv
used in similar studies [13]. The case analysis involved a. variety of data. gatlhering lieth- I
ods during the analysis p)hase including informal descriptions of user needs, sinmlated client

meetings, and actual documents from real-life situations. The major outputs developed by
the participants included requirements statements, data. flow dliagrams. entity-relationship I
diagrams, database design and implementation. These activities were collipleted during a

period of over two months prior to the subject's participation in the focus groups. Many sub-
jects had extensive experience in domains other than computer based systemns developnlitnt

such as ship building and aviation maintenance where concepts of' traceability are wildel"
used.

Task
The case study was in the domain of customer order processing in a utility company.

The problem was chosen for several reasons: 3
1. The case study has been developed based on data. from an extensive domain analysis.

The domain analysis was based on a real life system developed by a large informal ion
systems consulting organization.

"2. The case study has been used successfully in several settings including prol ocol analysis

of group problem solving behavior. I
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3. The problem domain is familiar to the subjects as they have had personal eXluiences
with the services provided by the system.

4. Real life data could be easily collected from a utility company and used inI Ile alialvsis
and design of the system when necessary (e.g., rate schedules were collected Iioi• lie

local utility company and used in systems design)

5. The problem is sufficiently complex to cover all the basic elemells of systems designl

6. The problem could be partitioned so that different groups of stludent s could low assigned
projects that could be completed within a reasonable time frame.

Focus Groups
Focus group interviewing is among the most frequently used form of qualitative dala

collection technique. Focus group interviews are widely used in several domaiiis in(cldi(g
market research. One of the major purposes of focus groups is idea Generation.

Setting Focus groups were conducted in a, relatively formal setting - a group mieeling

room equipped with facilities for audio/video recording. Each focus group consisted of 5-10
panelists/students and the following steps were involved in each session:

* A short warmn-up period during which everyone. including the nodei'alol orgot itl ro-
duced and the ground rules of the interview stated.

" This was followed by a predisposition ldiscussion. about the contexts iII which t le
traceability issues needed to be explored. This included general discussiolls oil tIIe
stakeholder interests in traceability.

" Relevant, material on traceability from current vendor announ-mcements allnd esea•rchl
briefs were presented. These pro,,ided the basis for further discussionis oi their sl reiigt us
and weaknesses as well as modifications/extensions needed on ciri'rent ap)proailies.

" After all material had been discussed, a. collective and comparative discussion of all
topics was conducted. This was followed bi a wrap-up of the discussion. l)mmring
the wrap-up session, tihe particip)ants were prodded for their sunimmaries of what was
discussed in the group meeting.

Protocol Analysis A study of the problem solving behavior of subjects emigaged ini a
traceability exercise was conducted. The primary source of data, was the verbal plrotocols
of subjects. The verbal protocols provide a. trace of the thinking process in arriving at a
solution. The subjects in this exercise were required to identify traceabilitY info-rmiation tlhal
could be incorporated in their projects to satisfy various stakeholders.

Future Research
The major purpose of the above mentioned studies is to provide the basis for coi(luici Imig

an empirical study in real-life systems development environments. Tihe oul conies oftltie (III-

rent studies will help in the design of questionnaires as well a.s the design of focus groups and
structured interviews with "real" stakeholders in systems development. (designers. aialyst
end users etc.)
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Comparison of the two primary data collection strategies pr0\'itt.." ý(olilii c t~ iljgil
sights into the app~ropriate researchi metliodology fc -future work. ;it)cu oIS,lA)i ) p1 uvlde d
surprisingly interesting results. Ilii an exploratory dat a collect ionl ii i ii ( I. tlie "' I
biases do not constrain the pariticipaints. Iin our* study, for Inst ance. 111111 pvv ~i al I Bt
lated concepts of requirements traceability to thieir experiences inlliv "llbudili ii ejdl ;114 1i I 11

maintenance which emp~loy similar concep'ts. F'ocus groups conductedl wit Ii pairt ,ial V %vliu
have real-life systemns development experience is likely to provide vei~v val iia Lie uli ()11

information. As the participants are not restricted by the researchers,. idcas aiid pleihil)n

sit ion, this methiodology will often provide new persp~ectives and aippruacles I to 111c )IolI1em
b~eing exlplored. Protocol analysis, onl the other hand, is likely to provYyid e de;l d ji 1tw-metilul i

t ion on a prolblemf solving task in which the participant has sufficient k Iow lvd~t'. II uwve vt '

It. is extremely expenisivye in terms of dlemands on the subljects ill)(]I the lesearclic! d itu ii a.
Involve extensive work Iin study design. Therefore, the use of t is Ilwieliodologv '11wl ud 1L

restricted to a very small mnitmber of' subjects.I

4.1 Issues in the development of a model of TraceabilityI

hIml the following section, wve (hisculss_ soilie prel ilin ia iv fiindinlg's tIilat Wel p 1( I (dtvein1 ) d

Miodel of' traceabilitv and iiiecliatisiss to su)pport captulrinig aiid iew,)IsnmiiillgxiiI I lii-ý ullurw

niation . These findings suggest th~at several areas needl to be add re"Std by fiti IIAI Sti

Several exa~mples drawn froml prior r'esearchl have lbeel i included to "'h Ltvoa t e t lie tii a i 'Ct

*Different, sta keiolders ar lA i kelyv to ( i a\e differenti. uses foirag ii Ibv I1 frlcal if% h ll ag'

or relatiounslill)p bet weeii SYsI en compllonents. Eu rtlier I erii Id v mal a, I iccl 1 1[c)(i'111
typ)e of traceablilitY liik-ages betweeni the samec systems conilpowiellts. Hio l11t ililtS. illC

race~biit~vlinage betwee a equireuiment and anl i11lplellleiit alni M1 lld\'y (clllol c' hatil it'

implementation ,zat/iSjb t /',lie, rejuireienet . The end user mlar be 1).1iia 1manYlyilt oeresI ed ill
usinig this imitornial aion iii asccltailinug diat fihe system iueets )I.,io ici hr cqijlii (11(111 ý

whereas, the testiming personile 11(1 ay be Interested Inl detivl 'Ill- ig Iiisliikapt fint i tIl

linkages Let woeti requiii(rilientls and tests, procedulres (e.g.. tI s4) anid lie eflatilslips1*1)ý
between Implleimenitat ion aind test p~rocedures that va,11datc. lie4 1iipellenlt dl itllo. If I
the traceability In formnationi caii be used to verify whlet er t111cI t'st 5 wete \al l ;ila ti

comprehensive ai)( that thev ests fullY validate that thle inl plen wilit al lonl Iince(' all Ilie

test Criteria, thlenl tle inl llenlent ation catl be tllougilt to *sa Isl~'v requijelici rt1(ts I
The above perspective elaborates Omil traceabili ty as a mneasu re ol q a lit v oh' Owl sYstem.I

Quality. as viewedl 1)'v the custoiner, Is thle (hegree to wh icli I li pint l1its con 11)1 es \vx' ]I h3
their needs [141. From a project mianager's perspectiv'e. a mia join lurpot oh ijiahl *t v

assurance is t~o en~sure thbat "projects are proceeding oii sclied iule. wvit ]lil binbdge an ut I
a. traceable mannei', all(i Iii accordance withi customer requirv'iliellls and~ 1('rfnrilialce

criteria [15]". The linkage 'satisfies' as defined above to satisfy aii ('tld-ulser is uuilikelv
to be of mutch interest. to the program manager who cali not \\ait uimit di lt esting1
pha~se, but should ascertain wvhether intermediate compnhoients sutch as desigimsinet
the requirements. It Is ob)vious that, the concep~t of qjuality of a slyst em wxill be tliffeineii

fromn the persp~ectivyes of dhiffereiit stakeholders. Various i11 l es dlefi ne quia litv fromn I hit'
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lerspectives of dil'erent stakeholders; hence the need for different, types of traceability
information.

The design process spreads information; i.e., several components may be ilecessary to
satisfy a requirement. As -the system evolves over its development cycle, it is desirable
to identify design or implementation elements that 'partially satisfy' a given require-
ment. For instance, a hardware-software combination is often necessary to satisfy
a given requirement. When either the hardware or software component is deve-loped,
traceability information should reflect the fact that it partially satisfies the requiiement.
Such information can be use(l in ensuring that the partially satisfied requiie ent~s are
fully satisfied by performing necessary actions.

* A corrolary to the above is that it should be possible to identify a combination of
design elements that 'satisfy' a requirement or are 'generated by' a. requirement.

An example of such a traceability scheme is the use of AND-OR graphs to represent.
traceability linkages. AND-OR graphs can be used to model a task in, terms of a series
of goals and subgoals. Figure 1 illustrates such a complex linkage.

Customer order
requirement

Requirement t~poeseus eie[requirement toIeu e /

.0 :<Figure 1: An examp~le of Complex Linking

* A traceability scheme should recognize that all requirements are not equal in terms
of levels of importance or significance or criticality. It may be unnecessary or even
undesirable (considering the overhead involved in maintaining traceability) to maintain

linkages between every requirement wvith every artifact created during systems design
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process that is related to requjiremnct. It is essential to ideiiti",v ciiticai ~li Vfit

and mnaint ai n traceability linukages from those requiremenets lo svYslelm (oliiipolwiIs 3
"* A useful way of Identifying thle critical re(itliremlents is to( II t e I toii III(, cell ral

mtission' of the system. The business processes that gcucrclr i (jui remieiits Shiould Iev

identified and requirements evaluated with respect to thein to arrive at a cla'Silicat ioln.
iLe., Traceability should address thre issue of how the requirellnwi are arrived atlb. TIII
nrecessitates a urechan isni to repre~sent the claiboratiwi and rijit Ji:el/i w of re Ilio)I meii emt

front thle Cenltral mission or business p~rocesses that y( iutrai ret ii ei IiltS.

"* A traccability schemne should allow the linkages t~o be qualificd 1( deniole Whet her I lhe
link cain be vecrifled formally or Infor'mally. Consider the link h-oii a re~jumqn eirit to

adesign object. that ;wh,,Jics thle requirement. In a compillex. larg-e. real- tn yse

a scertaining whether some requirements have been satisfied call bll (toone oil]\ (jialit a-

ti vel\. It Is Often Impractical or i111 .)ssiblle to (0111 priei isi xelY aml f( on nilal v Itest suchi

requirements. It. is esp~ecially true of --generic*' relui remneiil all cNamiipie of whbichi is
-'the systemi shiall p~rovide a user friendly" interface. A link fron u ch at requiiirei ienl to
a (lesigni or ii p leinen tat ioi i coninponent should Identi fy not oi~l r wh ethe r 1till reim iv I

meint Is satisfied. buit, also --how". Thisl, InIformlatilonl cai be III I le fl'oiii of a 111ilk to at e'a

lprocedliir-e or specification or a qual it at ireevaltnatioii by illhe user. Fromi a mai IIa ill (iuic('

st 4ndpolinl. such quialitafivcly sflt8iskd requI.irementI~s mlar' need perTiodic exNa~iiiiii ionl to

en)sure that IIheY are still valid wvit l chlaigiiig re(1 liimeiu('ilts auth --I coliiiiiimitill '.3

"* Though onle of' th in most, CrItia] uIses Of t raccabhiO IS itxis "1-11 eiisii hat design2) 4lenient

satisfies a reu~uireinetill the existence of such a linik miav not a i i,%vt I hl e (Ilit'st loll: are

tlie fl ud ionalialt >s of thle design element rU/U wed by reA ' ii ?.\s aI a it of l1e c
validation andl verif` a tioi process. su ':hi a questionl Should Id e a iiwere d lo e I h'ir ll a
there are no I In iiecc:,sa IN functional ities Inl a srsteii I coni 1)11(11t tlilia ale 110l (Iliiveilb
useCr rif-ee(s: I f-.. thle liniks shioul ( le bidirectional to allow requii leI leI IcIIIs I ra (I Pig [orwi I Id.I

from reqjuirement s to system conhloiient 5. andl backwardi. [ron, sYst lim coi (0110eli it to

req u irem cii s.3

"* As system-s requirements evolve over tilie lifecycie, it will be w In 'i ificia I to ilSwess tille

Impact of chaniging requirements. If the design segilnelits f r om S ivcy n(jiireilielits

and( the imlplerrieitation that Y(,Iieint (d by design Segmuent", air' ieadi dei ife(L. I lie I
p~roject manager will be able to make anl Informed (lecisilin a bout tIe effortI uiedted to
imllemrent thle required changes. .Atraceabil ity schemeii itY prov ide both quma lit alive

(e.g., tile ciiatyof modules affectedl) as well as quaut it at ive (e.g.. the i 1111 in n'm of'
system componients, code segments affected ) io aid decision imaking,

"* An imp~ortant component of traceabl~ity information Is de-ilgnl rationiale. Rat ionaleI
specify the why of (decisions and trade-offs mnade throuighout t hec Syst ems developmenit
process. This information will 1,e of inrterest, to a variety of stakeliolders who ale Ii

terested in understanding, modifying and communicating d1ec-Voions miade I hrirghontl
the systemn developmrent process. Fuirther, this information wviil be extremely iiv seful Inl
change management iii the contexts of evolving requiremient~s anmd assliuiipltioiisý. Tile3
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rationale for systems components could be explicitly or 7"pichlly s)(cfiuif~ kyr equiir
ments or could 7-esult from design decisions.

Hamilton and Beeby [16] define traceability as the ability, to discover tl In' io In1'ui
every feature of a system. Design rationale is an importantl conlipolielt (4i suici a

history. Brown [17] states that it should be possible to idenltilYfy te requireliciie" or

design decision from which a product was derived. Design rationaile ident jfics ii~t oiilv
the decisions, but also the reasons behind them.

eTraceability' information ca-ii be used Iin project tracking and iiiaiiagenient. lracca bil-
ity links between various comlponlents of the, systeml- may includle Informaltion uised ill

project management (such as completioni date, status, Jpersonniel assiorln]meiit ). suchi anl
integration of project management, as a p)art of the systems d(leelopinellt process will
ensure that timely and accurate information is available for critical projoct 11anlage-
inent tasks.

e As complex systems are composedl of' interdepenldent comnponentfs. such dl) lr-p I t(d
shiould be represenited and mia iaaiitaed. Often the linter-coinponlent decpendelicies a ic
not well understood and dlociinmwnted.

Systems design is a complex activiIty invýolv!ing interdclepi~endet. (lecisiolis,. Ini the( a~s(iice
of mechanisms to record suchi dependencies. over thime and with chianging dlevelopilleilt
teams, this information will be lost. Such dependencies may span acioss diffel-ent
ssystemn components. A decisioni about softmar'e may be dep)Ci~dCet onl au earlier d('(Pi0ii
about. hardware. For inst~ance, a hardware decision to ulse 51 N Sjparcstat ionls as thie

hardware platformn may lead to a sof'tware decision that uses .817NO.8 as I lie operal Hilg
SYEiem. As the systeni evolve(s over ]is life cycle, the hardware decision nmay get ( iangoed
lea-ding to i nconsis enIcv witi i I lie software t~hatl was b~ased onl ,Ilie ear ier hia dware
decision. Unless the lelpeiilenicies are calpt-ured and mlaintaiiied. such issules mlay go
undetected leading to severe syst-eml integration p~rob~lems. Onur mlodel will providc
miechanismls Ito relpieseiit and reason withi the dependencies amonig (lesigl decisions.

* A major use of traceabilit'y 'Is thie idlentification and assignmenti ol' accounit ailit v. Elx-
amnples of such linkages include s 'ystem componen~ts desigtird by. systeml coin 1poilents
tested by or system comp~onents validtited/ceri'fied by or tnodi13cd by developiiieii per-
sonnel. Maintenance of accountability informiation will facilitate conimlinlicat ioul. co-
ordination and main-tenance of a s* ' stem. It Is especially implor-lant to mintaiiit dn ils
Information Iin missoion critica~l areas of the system. .Al analogY wvill be sitinilar hei(
in3formnatiolliia, m inta I ed inl air-craft. conlst~ruction and ialintena mice.

* A comprehensive mnechanismn for traceability should link the "humianware" conipomienlt
of a system to the other Components of the system. Examples- of' such linkages Includle
system functionali1ties perfornzed by humians. This information is necessarY to ensure
that the allocation decisions are complete and correct.

o Traceability linkages (e.g., explained by) to systems complonents suich as mianuals, poli-
cies and procedures that specify how to obtain a required perfomiiiaiwe from a sYstem)
component are as Import ant, as I lie iniformation about the 'ý%'liy' of' the dlesigni l)r)(ccs.
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* Automated support for traceability is extremely important given the volume and the
complexity of the task. Traceability information should be captured as a part of the
systems development process automatically when possible. It is especially desirable and
convenient to do so in situations where components are derivwd frow or (qiti'ialf ni of
(such as a decomposition) relationships (e.g., data flow diagranis and struct ure charts). 3

5 Design Rationale as an Example of Traceability 3
A conceptual model and mechanisms for the representation of and reasoning with proces
knowledge (i.e., design rationale) have been developed in earlier research as a part of the l
REMAP (Representation and MAintenance of Process Knowledge) project. The model
and the mechanisms provided by REMAP for representing and reasoning with traceabiltv
information to support various stakeholders is discussed in detail elsewhere [IS]. This design I
rationale model can be viewed as an instance of a traceability link between a requirement
and a. design element. The term "design element" denotes any part of the systeml design
or implementation (i.e., data flow diagrams. specifications, pieces of hardware. l111n1anware I
etc.). In this section, we discuss how such a model and reasoning mneclianisms can be tised
in the context of the issues discussed in the l)revious section. 3

" support for various stakeholders: There are a variety of stakeholders involved in large
software p1rojects. each having a different, set of goals and priorities. For each of the
stakeholders. some useful support. can be provided by recordinmg in some sl ucrdn-ei u
manner, the history of a design in I lie form of (design) rationale.

" partially satisfied requirements: The process of satisfying require menls inay general e
several issues that need to be resolved. Resolution of issues lead to one or more design
components. Partially satisfied requirements may be identified wit h1 un resolved issues
that relate to that requirement using structures like the AND-OR graphs in lIINM.I. W
A similar structure can be used in linking design artifacts to requiremnewls llro•iogl,
design decisions. 3

" criticality of requirements: Our model captures the elaboration and refinemite of re-
quirements. Critical 'mission statenlents" or core 'business process- object ives cal• be
the origin of such an elaboration and refinement. During this process, the critical-
ity or imlportance of requirements (an be ascertained and mounitored. The EI M AP
model can represent this information as an attribute of the links bet weer "iission stale-
ments/1)usiness processes and requiremnents or as attributes of requirements theniselves.
Then, the critical requirements can be monitored to ascertain whet-her all 111v issues
related to them are resolved in a timely manner. 3

" qualitative and quantitative reasoning: The strength or other characteristics of rela-
tionships can be either qualitative or quantitative. In R.EMAIP, the conlents of lhe

primitives can be informal information (such as text). But the model has well defined
semantics of relationships among its primitives, facilitating reasoning with this strluc-
t,ire. For instance, the assuml)tions in a design situation can be given differvild degrees
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of belief (or validity), and these beliefs can be automatically propagated to beliefs in
arguments, positions and so on. Further, the strengths can be either (Ilalitaltive o1
quantitative.

"change management: In REMAP, changes to design rationale will autolat icallv trigger
changes in the belief status (or validity) of design solutions thereby suggesting redesign
[181. Since various components of the process knowledge that lead to the designi solit io0
are tightly related, changes to the constraint set resulting out of clhanged assiliiuptions.
decisions or requirements will initiate the synthesis of a new designl "olut ion and11, provide
rich information to estimate the effort involved in redesign.

" project management: REMAP provides facilities for representitig and reasonlitg with
temporal information which can be useful for project managemntul. For instance. a
validity time can be assigned to issues which could be interpreted as the t inic frame
during which that issue must. be resolved. Then, this inforiat ion can Ik used for
generating reminders to the designers or managers to focus their at.t e.ioii oI issues
that may have to resolved within a time fraame or used in rank ordering issues. Pro jec
planning and control can be facilitated by integrity constraints oni its pirMillit ires. An
example of such a. constraint could state that no requirement. c:aln b)e elahorated or
refined until all requirements wi th higher priority or earlier validity t iine are considered.

"* accountability: The H EMAP environment facilitates the autoijiatic capltinc or the
represental ion of accontt ability infortma iol associated wiith ds(igi rat ioiahic.

" Links to all system co inponent s: The REMAP model can be used to capill tir relat io -
ships between requirements and all systema components. including liiuiai\\'wa i. har11d-
ware, soft ware etc.

" a.utoma1teld support: IEM AP provides automated support for diff''re ii siakelholders
including interactive querying and updating of the design rationale klnowledge base.
a. client-server architecture for multi-user support, a textual as well as hlypvrl ext.-like
user interface to the knowledge base and a reason maFitenance s'st em for tiallitai ling
and reasoning with design rationale.

" derived links: REMAP provides facilities for inferring knowledge based on( deductive
rules and facilitates the derivation of implicit links between rep.,reients aiid design
artifacts. For instance, a. rule could state tha.t if a design eleieni is created by a deci-
sion, and the decision resolves an issue and the issue was generaled by a requirement.
then the design element. traces to the requirement.

6 Conclusions

The preliminary analysis of the results of our initial study suggest that. coiiprehensivc Inodels
of traceability need to be developed. An approach to developing such models is to under-
stand the tra.ceabilitv needs of various stakeholders in the systems development process.
Further, a model of traceability should represent and reason with the semnantics of various
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traceability relationships in supporting system development and maintenance act.ivities. Our
current work has investigated the use of REMAP design rationale model and I lhe r'asoning
mechanisms supported by it as an example of such an approach. Developmneut of similar I
models and mechanisms to cover other important aspects of traceabilil \ are being a~ddressed

in ongoing research. 5
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AN INTERACTIVE NATURAL INTERFACE FOR
FORMAL CAPTURE OF COMPLEX SYSTEM REQUIREMENTS

Laura G. Hinton and Nicholas E. Karangelen
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ABSTRACT

Specification of top level system requirements is the critical first step in the development of large
complex computer-based systems. These requirements must be captured in a clear and
unambiguous form to avoid unintended interpretations by design personnel and to permit
expeditious pursuit of system development. This paper addresses the opportunity for application
of embedded expert system technology in the development of a natural language interface which is
tailored to support implementation of semi-automated environment for system requirements
generation and capture.

INTRODUCTION

Specification of top level system requirements is the critical first step in the development of large
complex computer-based systems. These requirements must be captured in as clear and
unambiguous form as possible to avoid unintended interpretations by design personnel and to
permit expeditious and direct pursuit of system development. Top level requirements for large
complex systems must also be internally consistent and complete to support efficient development
of system design and to avoid false starts due to incorrect or vague requirements. Top level system
requirements are often subject to broad interpretation particularly if they do not include quantitative
measures. English language statements of required functionality can be inherently ambiguous and
may contain multiple meanings which are context sensitive.

The development of top level system requirements typically includes a broad spectrum of
performance, functional, operational and other requirements established by domain experts who
understand the customers needs and constraints. These domain experts often have considerable
experience in the development and/or operation of similar systems but may not have formal training
or experience in the use of formal or semi-formal specification techniques (i.e. essentially all top
level specifications are written in english).

Natural language interface techniques potentially provide a mechanism for these domain experts to
interactively employ a semi-automated tool and a structured method which supports system
requirements generation and capture using common english which would require little or no
training. Expert system methods represent a powerful approach in the realization of natural
interface for requirements capture and analysis. This paper addresses the opportunity for
application of embedded expert system technology in the development of a natural language
interface which is tailored to support implementation of semi-automated environment for system
requirements generation and capture. The interactive natural language interface is intended to act as
a guide to domain expert users in development of formal, consistent, unambiguous requirements
for large complex systems.
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NATURAL INTERFACE OBJECTIVES I
One of the principal objectives for any natural interface is to reduce the effort expended by an
operator in learning and using a given operator-machine interface. In addition, this proposed
natural interface for top level requirements capture will provide a mechanism for informal
unstructured english text to be converted to a set of formal structured requirements through an
interactive session with an expert system conducted in english. The formal structured requirements I
captured using this approach can also be converted to an equivalent statement of requirements in

english.

The payoff in implementation of an effective natural interface is greater where the user's time is
highly valued (e.g., senior executives) and where familiarity with machine oriented interfaces is
low (e.g., w, any domain specific experts). Domain experts who typically create these top level
system requirements must also be the ones who refine them, or the requirements might be
misinterpreted in the refinement process. An interactive natural interface to a formal structured
requirements capture method would provide both ease of use for the user and a well structured,
clear requirements specification product.

The natural interface concept described in this paper supports generation and capture of a clear,
unambiguous, complete statement of the top level requirements and design constraints for a
complex system. The interface is intended to provide uninitiated users who are subject matter
experts a mechanism for developing and capturing effective complex system top level
requirements. The natural interface methodology should accommodate different perspectives of the
system or the system requirements which may be held by various domain experts in specific areas I
(i.e., the various engineering specialties).

NATURAL INTERFACE AND EXPERT SYSTEM EMPLOYMENT STRATEGY I
The symbolic processing technique represented by a forward-chaining inference engine is a natural
match to implementation of a natural structured interactive english interface and to the pursuit of
generating and refining a complete unambiguous set of top level system requirements. The
essential strategy for implementing an expert system-based natural interface for requirements
capture is to combine a high performance graphic interactive operator machine interface with an
innovative expert system designed to conduct an interactive dialogue with the user through natural
english language constructs.

The expert system creates a dialogue with the user implementing an initial rule set based on the 3
english language, the formal structure, and information specific to the project's domain.
Clarification of meaning are resolved by the user, and the expert system "learns" based on the user
responses to the expert system questions. For example, if a group of words are categorized as I
domain-specific "jargon" in the first paragraph of a sentence, that jargon is recognized throughout
the rest of the paper. The ability of the expert system to "learn" and "remember" supports the
capability of the interface to parse through a document without using complicated language
recognition techniques.

The expert system provides a mechanism for natural interactive exchange with the operator, and
guides the capture of requirements to ensure consistency, avoid ambiguity, and to help achieve I
completeness based on a format representation. To help the user better understand the formalized
requirement, a structured english version is created. This Equivalent Statement of Requirements
(ESOR) is a limited english explanation of the formal requirements. The ESOR allows domain I
experts to understand and examine the formal requirements and ensure that the converted
requirements are consistent with their intentions.

I
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PROTOTYPE SYSTEM REQUIREMENTS CAPTURE TEST BED

A rapid prototype test bed for examining the employment of expert system technology to top level
system requirements capture and analysis has been created using UNIX and the X Window
System on a Sun SPARCstation 2, and is written in the C programming language. The expert
system employed is CLIPS (NASA sponsored through COSMIC) which is embedded in the tool
and fully integrated within a UNIX process. A preliminary set of rules have been developed and
demonstrated which address the three key capabilities of the prototype system: (1) parse english
language requirements statements, (2) generate a formal structured statement of the requirement in
the form of an Information Model, and (3) ask the domain expert user questions to support correct
parsing of the requirements and to provide additional data to complete the Information Model. The
user interacts with the expert system by responding to questions and asserting additional
information. The expert system leads the user through a process designed to generate consistent
unambiguous requirements statements through natural english interaction with the user.

A unique implementation of CLIPS has been developed as part of the prototype test bed. This
implementation introduces the concept of "metarules" as they pertain to natural english language
requirements parsing and creating a structured formal representation of these requirements. This
approach is discussed below.

ENGLISH LANGUAGE REQUIREMENTS PARSING AND A METARULE
APPROACH

Parsing english language requirements and creating a structured formal representation of those
requirements (such as an Information Model) through an interactive session between operator and
machine is accomplished using a forward chaining expert system approach. The objective ;s not
to extract the semantic meaning of an english sentence, which is a much larger and potentially
overwhelming task, but to guide the human operator through a process of requirements refinement
and capture. The natural interface proposed here to support system requirements capture focuses
on a carefully chosen subset of english grammar and vocabulary which is common to the majority
of top level requirements. The selected subset is tailored to provide a robust english language
communication capability and to limit the processing required to parse and understand the user
input.

The embedded expert system is constructed in a way to maximize the flexibility of the knowledge
base through the use of an innovative metarule approach. The metarule approach employed is
described in the following paragraphs which begin by describing the typical operation of a forward
chaining inference engine and then contrast that operation with the metarule concept. The
advantages and disadvantages of the metarule approach are also addressed.

An expert system is typically composed of an inference engine and a knowledge base. Within the
knowledge base is one or more sets of rules and facts. Typically the rule base is fixed for a given
execution of the inference engine (although different subsets of rules may be employed at various
times) and the facts change as a function of external inputs and the operation of the inference
engine. In the case of a forward chaining inference engine the rules are constructed in an "if a then
b" format where a is the antecedent fact and b represents a consequent fact. (Both a and b can
represent complex boolean expressions of antecedent facts or consequent facts respectively.) The
inference engine looks for matches in the current facts with the antecedents of the rules. When a
current fact matches an antecedent of a particular rule, the rule is said to fire by essentially asserting
the facts in the consequent side of the rule. The new facts are then addressed in the same manner
by the inference engine until no additional facts are generated.
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The metarule approach to knowledge base creation and maintenance as applied in this research !
employs rules and facts in a somewhat different manner. In this unique implementation of CLIPS,
domain-specific rules are pre-processed and represented in CLIPS as facts. The CLIPS rules that
exist in the knowledge base (referred to as the metarules), consist of four format-dependent rules 1
that operate on all of the user-defined, domain-specific rules (see Figure 1). Using this approach,
the expert system partition of this system is designed to efficiently process those aspects of a
natural interface language parsing to support system requirements capture. 1

USER-TERMINOLOGY CLIPS USE FUNCTION/PURPOSE

Rule Fact Any string of characters that represent requirements
English Structured generation and capture I
Domain-specific
As a Group = KB 3

Metarule Rule Processing to implement USER-Rules. Parses
CLIPS Code these USER-Rules, prompts users, implements
as "defrules" rules, etc. Pre-processes USER-Rules into CLIPS- I

Facts

Rule Various groups of rules used for:
(additional) Input Conditioning

Only cot: ii pdnt tht User Interaction
the userinteracts wit KB Maintenance

Error Trapping
Structure Definition

Objects DeJines class hierarchy 3
Figure 1: CLIPS Metarule Approach

Metarules are designed to operate with depth-first conflict resolution and forward inferencing. The
term "metarule" refers to any CLIPS rule which is used to process another rule. Metarules can
only operate on rules that exist in a predefined form. The metarules "Detect a Valid Antecedent
Clause", "Conjunctive Antecedent Clause", "Execute User Rule", and "Mutually Exclusive
Parameters" are supported by:

<valid clause> A formats used by the metarules I
ManageRule Function communication from C++ to CLIPS
<result> A communication from CLIPS to C++

Information is represented in the CLIPS-based expert system through facts, objects, and global
variables. The user has access (modification, authoring, examination) to the sets of "if-then" rules
and their associated facts. During run time, facts/rules and metarules are maintained in the
knowledge base, which is processed by the inference engine. Although the knowledge base can be
accessed in a number of ways, it is processed only by the inference engine. The result of this
processing is modification of the knowledge base and creation of additional facts. 3
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To emphasize, all user-defined rules are internally stored as pro forma 'facts" in the knowledge
base. The metarules are able to identify these facts and to process them as logical decisions of the
sample type:

Whenever <antecedent> then <consequent>.

Where:

• <antecedent> represents one or more preconditions
• <consequent> represents one or more actions which result if all antecedents are

satisfied. Consequents can act as antecedents in other rules (i.e.
rules can be chained).

The advantages of this metarule approach include processing speed, and simplicity of user
implementatio-n. Bench mark tests on using CLIPS as an embedded system indicate a dramatic
increase in processing time with respect to the number of rules that the inference engine processes.
Tests run on number of rules, versus number of facts showed conclusively that a small number of
rules operating on a large number of facts is the optimal utilization of CLIPS. Simplicity of user
implementation is another key advantage. From the user's perspective, the rules will be seen as
english-like sentences and will be constructed primarily by responding to prompts from the user.
The technique minimizes natural language processing, provides the flexibility of adapting to the
user's lexicon and, most importantly, does not require the user to "program" rules in any particular
order.

The potential shortcoming of the proposed metarule approach is the possibility that processing
speed may still be slow. As CLIPS is an interpretive language (as opposed to compiled),
execution speed is affected, even with the time-saving advantages taken by the metarule approach.
However, using the expert system partition of this system as designed (to efficiently process those
aspects of a natural interface language parsing to support system requirements capture) tend to be
bound more by the graphic interface than with anything else, and is not anticipated to present an
unsolvable problem.

PRELIMINARY DEMONSTRATION - EXAMPLE UHF RADIO REQUIREMENTS
ANALYSIS

The following is a short example requirement which was processed using the prototype system.
The example top level requirement is part of an actual unclassified UHF radio system Tentative
Operational Requirement (TOR). The session begins by loading the raw (e.g. not analyzed)
requirements document and initiating the expert system. The expert system then leads the user
through an analysis of the requirements in a step wise fashion and builds a fact base and an
Information Model as a result of the interaction with the user. As the fact base grows through
interaction with the user, it is used by the expert system to maintain an internally consistent set of
requirements and terms of reference. During the process the expert system constructs a formal
structured Information Model (entity-relationship diagram) which captures the requirements as
refined through the interaction and also develops an equivalent statement of requirements which is
a structured english language representation of the Information model. Figure 2 illustrates the
original requirement as input into the system as well as the Information Model and ESOR generated
based upon an interactive session with the user.

267



I
U

PROMULGATE

AT F

NEED

g a = -- E D 
I

RAW

' SSTS AEOUPEDID PR IDESITS CGACSUPPONTf"R
-OEYO NDUNE F S IGHTAEOLMEMENIISORK AMPHS

VSFORG+JICEi l po UPRA IMAUHF ALI IEOLOWREO1 PFMIOEtFRANIOUORAM CB +InArFO 1W NGLOOFIK AlPT

%114RAD1O.~ V~p,*pjindfW

Cif PADO a.SYST6.4

J iJF.E AWKS4TASK FORM~

I
i - BLDS*&B YVt4NE OF SGHI

MAIJCe myp.oI SPPORT

B -. q LJNFRAD1O.adI*PROVItEA4 O. IGANC &PORT

... IV KF~dIoPROIM.CGA1EanV BWfS

Figure 2: Prototype System Output 3
FUTURE RESEARCH3

Continuation of this work will begin with identifying one or more formal structured requirements
capture techniques which can serve as test cases for implementation of a full scale natural language
interface capability. Research in natural language requirements parsing and development of rule
based strategies for interactive creation of structured top level requirements will be influenced in
part by the format and characteristics of the selected formal requirements structure. Additional
aspects of the future work will include characterizing the english grammar and usage nominally
associated with requirements specification, and development of graphic interactive techniques toenhance user interaction with both the expert system and the captured requirements.
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I INTEGRATED SYSTEM DESIGNER (ISD)

I kMary Blanchard

Science and Technology Asociaic-,, hic
I Suite 70W, 4(01 Norin Vairfax I)ri•,

Arlington, Virginia 22213

What information is necessary to Returning to figurc 1. vou will
Srepresent com plete system designs" note m any sources of IK )th input and

How should this information be repre- output. The seven sNvstenm default i-
sented to support evolving designs? braries are one example. Each ol these
Can this representation support reus- libraries will he predefined and includ'
ability? What format would enable all classes encapsulated with both at-
the er~gineers, end-users, and customers tributes and sern, ices, from which users
to view the system through the "same can create their own system repres.,nta-

I eyes"? How can the engineers ensure tion. ISD will provide support for
the proposed design fulfills the defined updating and expanding these libraries.
requirements'? Their existence serves two purp(,ces:

one, the user is able 10 qJuickly crcareWhile c,aamining each of these designs. and two, the system has a

I questions, we explored the currently systematic method for acquiring the
available CASE and CBSE tools. Each details of the system design. This aids
of today's tools provides a partial in both providing additional supporting
solution; what is lacking is a single documentation and a consistent set of
representation addressing all the above input data to the analysis and simula-

I questions. Our response is The Inte- tion tools.
grated System Designer (ISD) - a
single method of representing systems Actually this information is
which supports all the phases of prod- passed to the Automated Model Builder
uct life cycle; domain analysis, system before any analysis or simulation. The
design, trade-off analysis, development, Automated Model Builder is respon-and maintenance. The proposed solu- sible for synthesizing all the informa-

tion supports an iterative approach to tion contained within the system design
the previously outlined tasks. Dia- and creating an equivalent model that
grams 1-3 summarize ISD and its rela- can be und,.i stood by the analysis and
tionship to existing tools. simulation tools.
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figure 3 represent the resulting system
design. As you -.-M notice the design is

The other visible sources of broken into five parts - domain spe-
input and output are the domain spe- cific, human interface, data manage-
cific component libraries. Their usage ment, hardware, and task. How a sys-
is primarily for constructing the do- tem is represented using this technique
mains specific component of a new is explained in the next set of diagrams
system, using components from past 4-8 and in the subsequent paragraphs.
systems and applications. These com-
ponents may range from complete Contained within the Domain
applications to individual low-level Specific Component will be the people,
classes. It is up to the user to select the physical entities, and abstract entities
appropriate level of complexity for that exist within your domain. The
reuse. Human Interface Component will rep-

resent those entities and operations that
The components contained in constitute the user interface. Tradition-
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ally, these are menus, menu items, pumps, secondary storage devices, and
graphic icons, windows, and panes. any other physical devices within the I
However, your system may use a ther- Hardware Component. System default
mostat as an input device - whatever components with associated attributes 3
entities and operations your human and services will be available to the
interface consists of, represent it here. user to quickly assemble the design of

the hardware system.
Your data layout, which includes

tables, files, and databases are repre- All the services defined within U
sented in the Data Management Coin- the Domain Specific Component, Hu-
ponent. Each class and correspond- man Interface Component, and Data
ingly, each object will have an associ- Management Component will be
ated set of attributes defining the layout mapped to both hardware devices con-
and location of the data. The exact tained within the Hardware Compo-
format will vary depending upon the nent, and human resources contained
type of data management scheme se- within the Domain Specific Compo-
lected for your system design. Your nent, in the Task Component.
design may also involve more than one
data management scheme. Regardless I
of the scheme chosen, system default The justification for this repre-
classes, with encapsulated attributes sentation is based upon the history of 3
and services, will exist for you to use in the system design process. Historically,
building your layout. Associated with components such as the user interface
each data management scheme, will be has been very volatile, while compo- I
an "object-server" class, with the ser- nents related to the specific domain
vices "store" and "retrieve". In actual- have been more stable. Using this
ity, these two services will contain calls knowledge we have split the design into
to other store and retrieve services, to its respective volatile and stable com-
account for each of the possible loca- ponents. Since system performance is
tions the data could be stored. This one of our concerns, it is critical to
enables the analyzer and simulator to isolate the hardware component from i
model storage locations such as cache other system components. This enables
and RAM, besides a secondary storage the user to more easily test various 3
device, hardware configurations, without sig-

nificantly impacting the other compo-
Store all hardware devices, in- nents of the design. U

cluding CPUs, sensors, actuators, oper-
ating systems, networking components, 3
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HARDWARE DOMAIN TASK HUMAN DATA
T SPECIFIC INTERFACE MANAGEMENTCOMPONENT COCOMPONE CO NE COMPONENT COMPONENT

Figure 4

Diagram 4, illustrates the decom- of a task.
position of a system, hierarchically
from a top-down approach. ISD also
provides support for both bottom-up Diagrams 6 and 7, contain infor-
and integrated approaches, mation typically associated with a class.

Note, the rectangle containing "analy-
In diagram 5, the decomposition sis" is not solid, like the others. The

of the Domain Specific Component, is reasons being analysis results typically

demonstrated. All the diagrams shown provide information corresponding to

here are applicable to all five compo- the entire design, not an individual

nents - the exception being the "Ob- class.

ject-behavioral Diagram". This dia-
gram is not applicable to the Task Com- JSD supports the class relation-
ponent, since this information is already ships demonstrated in diagram 8.
contained within the PDL description
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As will become apparent, our Additionally, object,, are described in
notation describes classes with their terms of the messages they send, in I
encapsulated attributes and services, response to events and changes in state.
associations, and hierarchical and ag- The object-behavioral diagram provides 3
gregation relationships. Supporting the additional supporting notation
templates are provided for each class, required to describe an object's reac-
attribute, service and relationship. ISD tions to events and state changes. The
describes objects in terms of the at- subsequent diagrams 9 - 14, provide
tributes, services, and relationships descriptions of the supporting con- 3
associated, with the originating class. structs. I

I

State Transition Action i
objectobjec event/condition object ojc~evc

state: value or attribute 1: value e3ventoon trigger
attribute 2: valueevtlndtotrgrL - attribute 3: value action L

Figure 9 I

State Exception Transition Exception State Real-Time Constraint I

object event/condition object 3
state: value event/condition trigger time: value

' Iaction .

I
Figure 10 i
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State - Transition with action

object ~ eyentconditionobetbjc

stae: value satn rggrate: value

i State-Transition without action

ob..ject evenvconditlon object object

se: value e*v ftconditlon trigger state: valueI
State-Transition with action, without event

I I aobjet object.service object

tie value

State-Transition without action, without event

object object
ate: value -

tie: value state: value

i

Figure 11

Ii
i

i
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Entri into Multiple Subsequent States

Choice of Subseguent State object

Multiple Prior States Required3

Choicendfo ofrPiorgtat

Mat: vlueN Figur 1

Cboic, ofPriorStat
object
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Initial Transition/ntatt

object

I~¶~.istate: value

Final State/Final Transition
Sobject .1

state: value

Retujrn to Prior State

objectevent/condition object'
state: value I event/condition trigger-

action

Remain in Prior State

state: value v eventicondition triggerI

L action J

Figure 13

Path Real-Time Constraint Transition Real-Time Constraints

{pm1) No- {pm2} {rtc) rtc: real-time constraint

(pml - pm2 rtc) {rc pm: path marker

Figure 14
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In order to support top-down begins by defining the appropriate
composition, it is necessary to support classes at level n and decomposing I
both class and service decomposition. these classes into classes at level n - 1.
Class decomposition is fairly straight- Beginning at level n -1 and working up 3
forward and has been practiced for the hierarchy is also appropriate. Next,
several years, as has functional decom- the user maps the services associated
position. What is different is the re- with level n, to an. appropriate set of
quirement for the system design pro- services at level n - 1 (see figure 15).
cess to function in an object-oriented i
mode first, and then in a functional
mode. This requires a slightly different 3
process and representation than what
has been traditionally used. As you will
see in the following diagram, the user

I
(leis" a3

Level n atlribute 1

attribute 2

attribute nI
service I service

eservice b

,,svel - trviceb n tr

mnrlbuervic a service b evc

*I n-1 attribute aril

Figure 15
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Each service is described using with language-specific components.
PDL. Before a language choice is Diagram 16 illustrates sample lan-
made, language independent PDL is guage dependent components, language
used; after a choice is made, the previ- independent components, and PDL
ous PDL descriptions are mapped to constructs.
their corresponding language dependent
representations. In many cases, the
user will be asked for additional infor-
mation. Typically, this additional infor-
mation consists of attributes, associated

System-defined Language Independent Specific Classes
Mutual exclusion

Synchronization

Language-Independent PDL

Loop...EndLoop

If .. .Then

If...Then...EIse I System-defined language specific classes
Begin...End Package

Case.. .EndCase Rendezvous

Semaphore
Shared memory...

I Language Specific PDL (for Ada)

Loop

For Loop

While Loop

If.. .Then

Select [conditional]...

Figure 16
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The Automated Model Builders sources. Additionally, information 3
uses the resulting system design in about each of these components, as
conjunction with the Building Blocks well as PDL descriptions of tasks and
Table to produce the model for analysis ser'ices are used to locate and complete I
and simulation. Understanding the corresponding constructs within the
model's representation is necessary to Building Blocks Table (see figures 20 -
understand how the model is created. 23). The Automated Model Builder
Figures 17 - 19 contain a sample of a attaches each newly created construct
model ready for analysis and simula- or set of constructs to the "model under
tion. construction". These steps are repeated

until the list of resources, within the
It appears to be a long series of system design, are exhausted. At this

if-statements - which it is. However, point, the model is complete and ready
associated with one of the if-statements for analysis and simulation.
is an "event". This "event" translates to
a transition within the analysis or simu- Figure 24 documents the results
lation tool. This "event" translates to a of the analysis and simulation pro-
service on the system description side cesses.
of the tool. Also, on this diagram you Work on both the Building
will see probabilities. These represent Blocks Table and the system analysis/
the frequency of choosing one path design representation is on-going. The I
over another in the system design. focus is currently on testing the analy-
Other data includes the amount of time sis/design representation on as many
required to execute the service or ser- different types of systems as possible.
vice statement corresponding to the Future work includes building up the
"event". The execution time is as- "Building Blocks Table" to support U
sumed to be for a non-preemptive many different designs.
scenario. Preemption is modeled I
through additional constructs created by
the automated model builder and by the
"queuing up of data" at a resource.

The system produces models by
first examining each of the resources
contained within a system design, the
operating system (if applicable) execut-
ing on each of these resources, and the
tasks executing on each of these re- I
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iI event physical device clock-C .interrupt
suspended queue, priority 0

Then ready queue, priority 0

if CPU SDP available
ready queue, priority 0

Then selected ready queue, priority 0
IIf CPU SDP available

ready queue, priority 0
Then selected ready queue priority 0
IUnless ready queue, priority 0

if task task SDP-clock, priority 0
I selected ready queue, priority 0

Then operating system-SDP

If operating system-SDP
Then task task SDP-clock, priority 0 START

task running

I Fiqure 17

I
If event physical device clock.C L.interrupt

suspended queue, priority 0
Then ready queue, priority 0

If CPU SDP available
ready queue, priority 0Then selected ready queue, priority 0

I If CPU SDP available
ready queue, priority 1

Then selected ready queue priority 1
Unless ready queue, priority 0

If task tasK SDP-clock, priority 0
selected ready queue, priority 0

Then operating system-SDP
if operating system-SDP

Then task task SDP-clock, priority 0 S"ART
task running

Fiqure 18
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I

If task SDP-dock.if clock-Cl.compare ticksize interrupt count = true
task running

Then task SDP-clock idle
task running
CPU SDP available
suspended queue, priority 0

Probability associated with first condition of If-statement: 0.8

If task SDP-clock.if clock-Cl.compare ticksize interrupt count = true
task running I

Then wait 3
task SDP-clock. clock.Cl-send signal to calendar requested.
task running

Probability associated with first condition of If-statement: 0.2

If wait 3
task SDP-clock.clock-Cl.send signal to calendar completed I
task running

Then cpu SDP available
suspended queue, priority 0

Figure 19 1

Construct Formalism 3
Clock-Driven Tasks see External Event-Driven

Tasks

Internal Event-Driven Tasks I.-
External Event-Driven Tasks ...

Multitasking with Static see Selection of Ready Queue
Priorities with Static Priorities

see Selection of Task with
Static Priorities 3

Selection of Ready Queue
with Static Priorities ...

Selection of Task with Static .
Priorities

If-Then -

Figure 20
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ISelection of Ready If CPU <CPU name> available
Queue with ready queue, priority <n>

Static Priorities Then selected ready queue priority <n>

If CPU <CPU name> available:
ready queue, priority <n+]>

Then selected ready queue, priority <n +I >

Unless ready queue, priority <n>

Repeat Unless until numjprioriies = I

Repeat If- Then (2) until num_priorities = I

I Figure 21

I

Selection of Task If Task <task name>, priority <n> selected

I with ready queue. priority < n >
Static Priorities Then <OS>

I if <OS>
Then

Task <task name>, priority <n> START

Task running

I Event: <OS>.process scheduler

Time associated with event.: <OS.process scheduling <service time>

I Figure 22

I
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Internal If Event <event name>
Event-Driven

Tasks suspended queue. priority <n>

Then ready queue, priority <n>

Repeat Event <event name> until Event = null

Figure 23

I

Results:

Performance Analysis
System throughputs (task and service trhoughputs) I
System resource utilizations (hardware and software)
Average queue lengths of system resources I
Occurrences of system deadlock
Livelock I

Safety Analysis I
Cost Analysis

Reliability, Maintainability, and Supportability Analysis

Fault Tolerance Analysis I

F
I

Figure 24
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Strengthening the
Systems/Software Engineering Interface

for Real Time Systems

Mack Afford
Ascent Logic Corporation

ABSTRACT
As both Systems Engineering and Software intensive and error prone, and will thwart efforts to

Engineering mature, care must be taken to ensure that the improve both productivity of the development process as

interface between the two disciplines supports the passage well as the reliability of the end product operational

of information as 'smoothly" as possible (i.e., is neither system.

Slabor intensive nor error prone). Several current problems Ile puros of this paper is to nawe the development

are identified, and a solution to the "Babel of Notations" of this interface from its inception in the 1960s, identify

problem is proposed. the current issues, and to propose an approach to one of its
thorniest problems - the mapping of systems engineering

1. INTRODUCTION notations onto software engineering notations.

In his fantasy series about the mythical magical world 2. BACKGROUND
of Xanth, Piers Anthony describes a chasm full of dragons 2. BACKGROUnD
which divides Xanth. The chasm has a "forget spell" The discipline of Systems Engineering gained

I attached to it, so that one forgets it is there unless within prominence in the late 1950s, because it was viewed as a
50 yards of it. Characters in his novels are continually solution to the problems associated with the development
making plans, and then suddenly discovering (actually, r of systems of high complexity with engineers from
discovering) the chasm as they near it, and having to battle multiple disciplines. It was so successful that in the middiaosc to get across. Of course, after they have finally 1960s its use became mandated by the Department of
dragons tgeacosOfcusatrtehaefnly Defense on all military Systems, and all militarycrossed it, as they depart they forget that it exists.Densonalmiarsytsndal iiay

that st es contractors sponsored training courses for their front end
This is a good analogy for the c hasm t separates engineers to gain a woriking knowledge of its concepts.

"forget spell". Software engineering literature is full of In 1968, the term "software engineering" was coined,
"foretspel" Sotwreengnerin lteatue s fllof and concepts of "programming" and "software

discussions of how to do requirements and designs of real development" were matured into those of "engineering the
time software residing in embedded systems, but it is only software". An attempt was made by systems engineers to
when they start to work on a real project that they software as was ade by ystems
rediscover that they must get their requirements from the treat software as "just another component". Systems
systems engineers. Similarly, systems engineers perform engineers allocated functions to software components, and
their front end studies, with full knowledge that software specifications were written to document those allocations;willhav tobe dvelped butit s oly WEN heyget then software developers developed software to satisfy thewill have to be developed; but it is only W HEN they get re u em nsi th sp cf aio .
ready to turn over requirements to the software engineers requirements in the specifications.To understand the issues related to the interface
that they rediscover that WHAT they are ready to turn over between systems and software engineering, it is useful todoes not meet the perceived needs of the software bewesytsadsowrengeriitsueflo
engineers, step back and review both the fundamental culture of

During the past 30 years. the complexity of systems systems engineering, and the way in which the interface
b ring i ethed ast b0yeany, thecomeasurexiy i temsed b was viewed as software engineering was developing. This

beingthen sets the stage for understanding the current interface
several orders of magnitude (e.g., size of code, size of btens them.
memory, number of instructions per second). During that
time, the interface between the systems and software
engineers has suffered significantly. With the advent of 2.1 Culture of Systems Engineering. The
automated tools for both the systems and software basic concept of systems engineering presented in the
engineers, new problems have prevented the desired 1960s is rather simple and elegant, as illustrated in Exhibit
"seamless" transit between tool sets, and it is becoming I. Systems engineers are responsible for translating

imperative that this interface be smoothed OUL Unless this customer goals, desires, and "requirements" into an
problem is solved, the interface will remain both labor integrated functional description of the black box behavior

of a system and associated performance. This behavior is
reviewed with the customer to gain concurrence, and then
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i
these functions and their performance are decomposed and The component developers thus play three different
allocated to components, thus providing a systematic roles: 0
method of exploring the design space. Each design is during the systems analysis and early design phases, the
evaluated by component developers for feasibility, cost component developer provides estimates of feasibility,
effectiveness, schedule and risk, and the process iterated cost, schedule, and risk implications of proposed allocation
until an optimized (or at least acceptable) design is found. of functions and performance to the component to aid the £
In addition, the designs are evaluated by the engineering systems engineer in defining the system black box
specialties (e.g.., reliability, availability, logistics, human behavior. These responses are usually performed in
interface, training, manufacturability) to ensure that these working groups, with little formality, but are vital to the I
aspects of the design are acceptable as well. When there is assessment of feasibility of a system design and to support
consensus on feasibility, acceptability, and cost- tradeoffs.
effectiveness of a design by all players (including the during the end of the system design phase, a system
customer), this design becomes the baseline description, specification containing the allocation of requirements to a

System component is reviewed by the component developer to
ensure agreement with proposed cost, schedule, and risk

CI C2 assessments; and
during development phase, the component developer is

.' . responsible for development of the component to satisfy
s~sTE is dsied - _ the requirements. When completed, the component ISYSTEM s descibe . .. _...

first as a block box. developer assist integration and lest.
todentify p.p ,,

f- unctions ... . by Aflocation
-prlo, mancr.•, _•..,:. ofn The mechanism for defining the system behavior 3

...... ... ,. , € componetsn originally promulgated in the 1960s was to use the

e-;...ls-4ie.,-a, .•.Functional Flow Block Diagrams (FFBDs). This providedDeig is then .... .. .by all

"-51 ."- ! asclpl"nes, a t•etratd a hierarchical approach for the definition of the timelines of
function execution. The original applications of the
approach was the design of a missile and its launch time
line, so there was a significant bias towards representation
of sequences and concurrencies of functions. Exhibit 2

Exhibit 1 Fundamental Concepts of Systems presents an example of the notation.
Engineering

At this point, development shifts to the design of
components to satisfy the allocated requirements. Systems
Engineers monitoc the design to ensure that the satsfed inerto 4

requirements will be satisfied, monitor the integration and I
test activities, and p vcess the hundreds (or even thousands)
of change orders resulting from changing customer
requirements and/or component designer feedback.

The criteria dictating the level of detail of the I
functionality allocazd to the components is simple: the
black box behavior of the component is described to the EH
level of detail necessary for the component developers to Exhibit 2. Sample FFBD - Hierarchy of u
complete their design without reference to how other Functions
components are being developed. In particular, all Tc
interactions are to be identified and specified. It is The importance of the choice of FFBDs to the
Systems Engineer's job to ensure that if all component interface between Systems and Software Engineering will
developers satisfied their requirements, then the be discussed further below.
components will integrate correctly to satisfy the
customer's requirements. This approach allows fairly 2.2 SE/SWE Interface in the 1960s. During I
complex systems to be developed, because component the 1960s, selection of the computers for a system was
developers need only to satisfy their allocated requirements driven by the environmental and sizing requirements.
and interfaces -- this limits the amount of information Reliability for the computer component was dictated by the
needed to develop any component. The components are reliability of the computer hardware. By today's standards,
usually divided by discipline (e.g., propulsion, structures, the computers were quite small in both memory and
electronics) so that one trained in that discipline can execution speed, and hence the complexity of the software
complete the designs of the components. was limited. Thus the allocation of functions to the
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Ccomputer was equivalent to the allocation of functions to To cope with this, software development was upgraded
the software with sizing constraints, into Software Engineering, with emphasis on design

To get an appreciation for how the interface between techniques, cost estimation, design for maintainability, etc.
systems and software engineering has evolved, it is Thus software developers were no longer regarded as
instructive to read the systems engineering textbooks of "technicians", but as a separate discipline, which should be
the 1960s and early 1970s. For example, in his book The in charge of the software component. Structured Analysis
Management of Systems Engineering, Wilton techniques , using some version of Data Flow Diagrams,
Chase devotes an entire chapter to "Computer and Software began to be used to discipline the software design process.
Systems Engineering". Some interesting excerpts: In addition, software became a Configuration Item

"Designing a computer program ... requires the (i.e., a component), with a software developer placed in
application of pure logic for devising the information charge of it. This seemed to place software on the same
processing routines. ... Because computer par as other components, but there was an important
programming is strictly an "intellectual exercise, its difference -- the computing hardware was usually regarded
effective system engineering is the most difficult as a separate component, selected by systems and hardware
aspect of designing a complex man-machine system." engineers to satisfy cost. reliability, capacity, and logistics
[Chase, p 93]. requirements. Thus the primary issue facing the software

"The most critical step in a software design and manager was whether all of the software could be developed
development effort is the startup requirements on time and fit inside of the pre-selected hardware. This
analysis. The miss-allocation of software meant that the software manager was not a full member of
requirements occurs when the analysis and definition the component development team.
is split among several functional organizational areas The interface that evolved between the systems and
making proper technical coordination nearly software engineers during this time had some unfortunate
impossible. An effective means of avoiding this characteristics. Systems engineers still defined functions
problem is to assign the total responsibility for of the system (organized by the FFBDs), and allocated
determining software requirements to a central some of the functions to the software component; and
systems engineering activity." [CHASE, p.100]. these allocations were documented in specification

Topics covered in this chapter include determination of documents (e.g., MIL-STD 490 B5 Computer Software
computer capacity, definition of functions, Configuration Item). Software developers then began their
computer/software design tradeoffs, software design software analysis from these documents. Thus the
(including flowcharting by the systems engineer), coding, information content developed at the system level (with
documentation, human interface, and testing. Detailed timeline orientation) was reduced to textual testable
design and coding, and unit test were relegated to requirements on functions and performance, which was
"programmers". In other words, systems engineers were in then translated into a data flow diagram terminology. This
charge of the top level "software design". incompatibility between the system and software

This interface was somewhat similar to the interface descriptive was partially masked by the need for an
between systems engineers and analog control engineers: intermediate hardcopy document; non the less, it is a
the analog control loops were developed by the control problem that has remained into the 1990s.
engineers, and then imposed on the component developers Finally, as systems complexity increased, the systems
as requirements. engineers abrogated their responsibility to provide

The conclusion drawn from this discussion is that complete requirements to the software component, and the
during the 1960s the software was not viewed as a software developers did not pick it up. Although the
component on the par with other components -- to the concepts were available (e.g., [ALFO]), few software
extent that software was considered as a component, the specifications provided a complete set of testable
systems engineers were in charge. statements constraining the accuracy and response times of

each required action of the software (i.e., input, condition,
2-3 Trends in the late 60s and 70s. During output) residing in its computer. The value for such

the next decade, a number of trends occurred which made requirements in such a format has not been recognized by
the interface between systems and software engineers more the majority of practicing software engineers even today.
complex. In addition, the systems engineers abrogated their

First, as the computing hardware became larger, the responsibility to define the interface between the system
size and complexity of software became larger. This had operator and the software component (and thus verify that
several predictable consequences. The design of the the human/computer interface standards required for training
software into units developed by programmers became were satisfied). These issues were deferred not just until
increasingly important so that more software developers software requirements, but in many cases past preliminary
could be used, and hence management of multiple design and even detailed design until the coding phase,
developers became a critical problem. where they were not reviewed at all. This became the
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prime cause for the generally wretched human computer interpret the paper requirements to develop their own
interfaces exhibited by the generated software. models to support the next layer of design. This interface

is now even more labor intensive and error prone than
2.4 Trends in the 80s. During the 1980s, the previously. In many cases, the software engineering starts

capacity of processors continued to increase, and hence before the systems engineering has started, much less I
increase in system complexity got worse. But some new produce preliminary outputs to the software developers..

trends emerged that exacerbated the systems/software
engineering interface problem. 3. SUMMARY OF ISSUES AND SOME

First. as processors got faster and smaller, and APPROACHES I
communications capability increased, most embedded Analysis of the above trends gives rise to six general
computing systems became distributed. Unfortunately, the issues that must be addressed in order to strengthen the
design of the distributed system became an orphan, claimed systems/software engineering interface:
by neither the systems engineers, nor the computer 1) Where does systems engineering stop and
hardware engineers, nor by the software engineers. The software engineering begin? Two critical parts of
systems engineers did not claim it because it was perceived this issue are:
as a component design issue; the computer hardware la) who does the human/computer interface? On the
engineers could not claim it because the critical issue was one hand. systems engineering is ultimately responsible
the allocation of processing to processors; and the software for ensuring that the HCI satisfies the required training
engineers were not prepared to deal with the issues of standards. On the other hand, we have painfully learned 5
computer system reliability, logistics, etc. that rapid prototyping is necessary to define such interfaces

Secondly, due to advances in computer chip early in order to estimate the size of the required software.
technology, it became pcsible to make faster computer Ib) who does the distributed design? On the one hand, I
systems by use of specialized computer chips, thus a systems engineering job must be done on the distributed
requiring a hardware-software tradeoff. Again, such computer component to deal with issues of reliability,
tradeoffs became an orphan -- the systems engineers availability, logistics, sizing, etc.; yet much of the fault
couldn't do it because of the low level of detail needed to tolerance will be implemented in software.
perform such tradeoffs, while the computer hardware and There is current movement to collect the issues of
software engineers did not speak a common language distributed design (including capacity, fault tolerance,
needed to perform te tradeoffs, reliability, availability, dependability, andI

Another consequence of the advances in computer hardware/software tradeoffs) into a Computer Based

hardware was that it became cost effective to place high Systems Engineering discipline (e.g., see [LAVI]). This
performance engineering workstations on the desks of the doesn't completely solve the problem, but designates a

engineers to provide aids for system and component new role and defines a discipline responsible for performing
specification and design. The electronic designers were the distributed and hardware/software tradeoff design of a
aided by the CAE tools (e.g., schematic capture and computer system in terms of its components (i.e.,

simulation, the schematic layout tools). The software computer hardware components, communication I
developers were aided by CASE tools. And finally, the components, and computer software components).
systems engineers were provided with system design Although this replaces one interface problem (i.e., systems
automation tools (e.g., interactive simulators, automated engineering/software engineering) with two - systems|
traceability support, and tools to support systems analysis engineering to computer systems engineering and computer
and design synthesis). systems engineering to software engineering .- I believe

As these tools matured, a consensus emerged that the this is the right approach.

requirements and design specifications should be executable 2) How detailed is the specification of the

to eliminate ambiguities, incompleteness and computer system/software? It is a systems
inconsistencies. In the CAE world, a standard executable engineering responsibility to define the interactions

model emerged (i.e., VHDL). Unfortunately, in the CASE between components to a sufficient detail that component !
world, a plethora of tools emerged using a variety of developers can develop the components independently.

modeling notations (i.e., Data Flow Diagrams, Control This argues for an executable specification of the

Flow Diagrams, Petri Nets, SADT/IDEF0 diagrams, computer component, and equally argues for an I
Object Oriented requirements models, the Mills Black Box executable specification of the software component at

notation, etc.). At the system level, some used various the (stimulus, condition, response) level, with performance
simulation models, while others used an FFBD notation requirements on response time and accuracy for specified

extended into an executable timeline oriented behavior arrival rates. Anything less than this is almost guaranteed I
model. Yet the interface has remained the same as in the to contain ambiguity and/or be incomplete.
1970s: systems engineers model the system, write paper This imposes requirements on both sets of
specifications, then computer and software engineers participants - the requirements for the systems engineer to

generate such executable specifications, and the obligation
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for the software engineer to demonstrate that they have 6) If the systems engineers provide an executable
been satisfied (i.e., the specified sequences of stimulus- specification of the software component viewed
condition-response behavior have been preserved), as a black box, how will the software
Although such specifications are currently feasible, the engineering methods demonstrate (or prove)
culture of systems engineering is only now beginning to that the black box behavior (sequences of
recognize its obligation, stimulus-condition-response) has been
How is the specification information passed -- (provably!) preserved by the softwvre design?
in a paper specification or by "database" on Current software development techniques are not
electronic media? currently oriented towards this problem.

The CALS initiative is clearly moving towards
electronic media for capturing relevant requirements/design 4. REDUCING THE BABEL OF NOTATIONS
information. One emerging view is that the paper As noted above, one of the thorniest problems with
specification should be a "text view" of the "model" the interface between systems and software engineering
defining component behavior, and that the data base of (with or without a CBSE role) is the problem of differing
allocated behavior should constitute the "real" notations. The philosophy of Ascent Logic Corporation
specification. Note that unless this is the case, the recognizes that, since systems engineering is the
transition from systems engineering model to paper to interdisciplinary engineering discipline, it is the obligation
software requirements model will be both time consuming of the systems engineer to present information in the
and error prone. This gives rise to the next problem. language of the component developers, hence it is the
What is the notation or the model passed to obligation of the systems engineering tools to provide an
software engineering? automated interface to downstream tools. The approach

The problem here is that systems engineers have their developed to address this problem is four fold:
notations (e.g., time oriented FFBD notations, and their a) system behavior is described using "behavior diagrams
extensions), and software engineers have their notations (BDs)", which are an executable extension of the FFBDs.
(e.g., DFD or concurrent state machines). It does no good An element-relation-attribute-structures data store is used to
to insist that one of them change to using the notation of kcep information about these diagrams, their contents and
the other -- they have two different cultures, and cultural traceability.
inertia and cost of training suggests that this solution is b) as additional notations are considered, an attempt is made
infeasible.. On the other hand, if two different notations to perform a mapping from the BDs onto the notation --
are used, then the mapping from one to the other must be the tool data store is extended to capture any additional
automated, or the interface will be time consuming and information which is not yet represented in the current
error prone, not just for the initial specification, but for notation; and
each change thereafter. c) an editor is developed to generate the new notation from

A significant problem here is that there is not a single the data store using projection (i.e., finding the applicable
software engineering notation -- Al Davis' book (DAVIS] subset of information needed to display the notation) and
describes a number of different notations in use today (e.g., rules needed to display this information subset in the
DFD, CFD, Petri Nets, Concurrent State Machines, notation's syntax.
StateCharts, object oriented analyses, etc..). Definition of d0 information is output in the input syntax of the
an automated mapping from system to software downstream tool which is used by the downstream
requirements is perhaps the biggest theoretical and practical developer. Hopefully, there is a standard for the syntax and
problem relating to the interface. An approach to solving semantics of such information which is accepted by many
this problem is presented in the next section below, different tools(e.g., VHDL for CAE tools, CDIF for
What is the nature of the dialog (including the CASE tools).
feedback) between system and software The working hypothesis is that, since the BDs can be
engineering? For example: used to describe the observable behavior of any system or
when required processing is allocated to the computer component viewed as a black box, then there should be a
component (particularly the response times and accuracy of mapping onto other notations which are used to describe
processing), feedback is required on the feasibility and the same "black box". So far, this hypothesis has
cost/schedule implications of such allocations (necessary to withstood the test of a number of other notations. After a
support h/w s/w tradeoffs); presentation of the Behavior Diagram notation, an

then processing requirements are allocated between computer overview of the mappings to a representative set of
and operators, a rapid prototype may be required to ensure notations is presented -- the mappings onto all known
that the software behaves as the user expects notations would surpass the page limitations of this paper.

Again, the issue here is to provide a rapid feedback
mechanism to speed up the system design process. 4.1 Behavior Diagrams. The behavior diagram
Finally, notation was developed by merging the concepts of the

systems engineering Functional Flow Block Diagram (i.e..
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flow notations (i.e.,, flows of items between functions, as
in IDEFO or Data Flow Diagrams), Graph Models of

Computation (i.e.. showing multiple exits of a Function), A
Hierarchy of control concepts (i.e. defining replicated
concurrent functions), and explicit labeling of fitiction exit Fuction

conditions and performance. The result was an executable F Y
notation which could be used to precisely define the
intended behavior of a system. It was then augmented to C z
describe inte•face designs and fault detectiontecovey.

The foundation of the behavior diagram notation is the
concept of Discreteltems processed by DiscreteFunction&.
A DiscreteItem may have contents, but arrives logically as Exhibit 3 Example Discrete Function
a unit at an identifiable moment in time. The Discreteltem
can be used to represent either a physical thing (e.g., a A DiscreteFunction can be decomposed into a "Response
peach) or a set of data. Some Discreteltems (called state Net", or RNet, to define how the contents of the input
items) contain the partially processed results of previous items are used to determine conditions under which each
functions operating on previous input items, and are passed output item and condition is selected, and are used to
down to subsequent functions for use in processing future generate the contents of the output items. The definition I
arriving items. The DiscreteItems entering or exiting the of a DiscreteFunction is a mild extension of the "function"
system boundary are by definition the "observables" of the of a finite state machine -- it is allowed to generate
system. The DiscreteItems are represented on a graph by a combinations of outputs (not just a single output), its 5
shaded oval containing its name. execution may require the availability of a designated

Exhibit 3 presents a DiscreteFunction, represented resource, and the state items (e.g., containing state
graphically by a shaded rectangle. Time flows from top to information) are explicitly defined. The RNets and their
bottom, so the line at the top of the DiscreteFunction contents are equivalent to a completed decision table U
carries the enablement from a previous function. When defining the stimulus-condition-response of a function. An
enabled, the Discrete Function waits for the arrival of a example of an RNet is shown below, which accepts A, B,
Discrete Item - in the diagram below, only one or C and outputs either X and Y or Z or nothing I
DiscreteItem A is shown, but more than one is possible. (depending on the arrival and value of a condition CCI,
When the first item arrives, any combination of the then generates the state item and selects the appropriate
output items (e.g., B and/or C) can be generated (including exit.
the state item S2),, and one of its exits is taken (which
enables some subsequent function). after a finite duration. A
If a non-designated item arrives, this is assumed to be an
error (e.g., input out of sequence). The exits are labeled ( JI
with the names of the conditions (e.g., Cl and C2) to be ( "j
met to take the exit. Exits can be classified as normal, ,. =
exceptional, or "timeout" (which is taken if no input
arrives within a designated period of time). The C ', ExtC1

DiscreteFunction can also be defined to require a designated Statel Si1- c 3
resource amount, and if this is not available when the E stuff

input item arrives, the function will wait for the resource T"an'for ct 0avail biliy. XY stuf T2and ransform

Exhibit 4 Example Response Net

Sequences of Functions are described with a Function Net,
or FNet containing functions, as shown in Exhibit 5. I
Time flows from top to bottom (indicating arrival of items
to be processed) and left to right (reflecting inputs
transformed into outputs). Looking at the black box
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boundary of Exhibit 5, note that first a Peach arrives, then The functions can be placed into graphs containing not
a Can: that first a peach Skin. then a Pit, and then Canned just sequences, but selections, iterations, loops,
Slices exits the boundary -- these are all explicitly concurrencies, and replications as well. The notation for
observable. The processing is described as a sequence of these graphic constructs appears below.
three functions. Note that state items pass from "Skin a
Peach" to "Slice a Peach" and from "Slice a Peach" to
"Can a Peach", and since they are "inside the box" they are
not observable. The Function "Can a Peach" cannot
execute until the "Can" arrives.

""SExhibit 7 Behavior Graph Constructs.

The replication construct requires a special word of

.... .explanation. One defines the domain of replication (e.g.,
for each aircraft in track, for each user of the system), and
then defines one function per replicate. In this way, users
do not have to deal explicitly with "indices of functions" in
order to define them. Finally, a coordination function is

Exhibit 5 Example Sequence defined, which accepts status from the replicates and
generates controls back to them; the coordination function
is responsible for detecting and resolving all conflicts

This notation is executable, i.e., it can be executed to between the replicates (e.g.. two aircraft collide, or giving

yield the times of the outputs from the times of the inputs priority to certain users if there are insufficient resources to

and the duration's of the functions. The Figure below service all).
presents a sample timeline. Note that the empty bar To deal with large models, a graph of functions can be
presentes a sapleriod timen Noen tafunctin t em uty aggregated into a "TimeFunctions", i.e., a function which
indicates a period of time when a function is enabled but inputs and outputs specified sequences of items.
waiting for an inpuL and a dark filled bar indicates the Functional Decomposition then reverses the aggregation
duration required for the execution of the function. process, defining a graph of functions which preserve
Outputs are available when the function completes. specific properties of the original function (i.e.,

input/output content and sequence, number and kinds of

Skin a Peach exits, and ability to calculate the performance of the parent
function from the performance indices of the functions on

ENABLED the graph. The aggregation or decomposition procedure
wait for peach can be recursive to organize a graph of arbitrary size and
Peach arrives complexity into a hierarchy of functions and their

Produce Skin decompositions to support understandability.
& Skinned Peach

EMIT Skin & Skinned Peach,
EXIT; ENABLE Slice a Peach

PRODUCE Pit & Sliced Peach

EMIT Pit & Sliced Peach, 0.
EXIT, enable Can a Peach

Skin a Peach

Wait for Can

Can arrives

Can the Peach W" p

EMIT Canned Slices

Exhibit 6 -- Sample Timeline Exhibit 8 Allocation of Functions to

Components

297



I
When the desired behavior of a system is defined, iteration-concurrency-replication information, and

functions are allocated to the system components. The defaulting the flows to the "data" mode. and allowing the 0
Figure below illustrates this process. The black box user to later designate it as a "control flow". Exhibit 10
behavior of the system is decomposed to the level that presents the IDEF0 diagram that results from the
functions can be partitioned and allocated to the application of this procedure. 5
components of a postulated architecture (e.g., C1, C2 and
C3, shown in the upper right). Note that the allocation
yields the requirements for a new interface function labeled
IF, which is decomposed and allocated between sender and F2 a
receiver (and possibly a communications component). Ai t•:
This process can be recursively applied to yield layers of
interface design. The resulting allocated functions, I
including those implementing the interface design, then are
extracted to yield the black box behavior of a component. run.t" 0

The extraction process can be implemented by projection 1

operators.

The RDD notation thus provides the system designer AU-THoM NAMSEt:
w ith the ability to define an executable description of the system _UserSystemFunction
desired behavior, and its allocation to components. It I Is,, Ssem rM:do,

supports separation of concerns (e.g., separation of normal 1.2 N.m A2
from exceptional behavior, single object behavior from 14 Nam st92l2-2 Itom 02

behavior to coordinate concurrent functionality, normal 2-4 hem 2 2

from interface behavior). 5-2 Rom CetltO I

4.2 Systems Engineering Notations E
(FFBDs,N-Squared charts, IDEFO). The BD Exhibit 9 Example N-Squared Chart
notation is mapped onto the Systems Engineering These ansformations are performed automatically by the
notations in order to present practicing systems engineers RDD-100 System Designer using an interactive editor forI
information in a notation in which they were trained. each type m Wene fs aractidefedin one
Although the BD notation was synthesized from the each tye of diagram. When the flows are modified in one
FFBDs and other notations, it is useful to actually diagram, the flows in all other diagrams are updated when
construct publishable FFBDs from the BDs. For example, selected, so that the different views of the information in I
the FFBD in Exhibit 2 was created from a BD the data store cannot be "out of synchronization".
automatically by eliminating the inputs, outputs, and
conditions, and displaying the resulting function sequences U0' e A

and concurrencies in a left to right format.
A corresponding N-Squared chart is constructed by

eliminating the function sequence, concurrency and
conditions, and external inputs and outputs. The resulting _
functions and their flows are represented by placing the
functions on the diagonal of a matrix, then placing a circle
denoting flow on the (ij) matrix element to represent the I
flow from function i to function j. A publishable N-
Squared chart is presented in Exhibit 9.

Many systems engineers from the manufacturing area I
use the IDEFO flow notation (a variant of the SADT
notation developed by Doug Ross, see [ROSS]). This Exhibit 10 Example IDEFO Diagram
notation describes essentially the same information as the
N-Squared chart, but describes external inputs and outputs I
as well as internal. The functions are arranged on a
diagonal as with the N-Squared Chart, but labeled arrows 4.3 Mapping to Petri Nets. I consider Petri
are used to describe flows. In addition, if a flow is Nets to be the assembly language of behavior. Simple I
designated as "data", it enters the side of a function box; if Petri Nets are used to describe sequence, selections, and
the flow is designated as "primarily a control", then it is concurrency as shown below:
shown to enter the top of a function box. These are
generated from BDs by ignoring the sequence-conditions-
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S•qol-om cu"f CCU.fcyrr• s341a-i,, rota C.w...y f Consider the Discrete Function shown in Exhibit 3.

V 2 Q) One can describe this DiscreteFunction as having four
\0 phases -- the enablement phase (i.e., arrival of function

enablement and state item); the triggering phase, when
one discrete items A, B, or C arrives; the calculation phase
in which some combination of the outputs X, Y, and Z are
generated; and finally the exit phase, when one of Cl or

Exhibit 11 Petri Net Constructs C2 is taken (this example ignores the resource, whiJ.h

could be shown as an additional branch).
Sequences is represented as follows: a :"token" is This DiscreteFunction F can be represented by the

placed into the Place 1; at some point, a transition will Petri Net shown below. The enablement phase is modeled
"fire", resulting in removing the token from place I and by the arrival of tokens to the ENTRY, and the token
inserting a token into Place 2. Selection is indicated by carrying the state information. -- a token would thus be
the transition removing a token from place 3 and inserting placed at Place 2. A colored token could be used to
tokens into either place 4 or place 5. Concurrency is represent the arrival of Discreteltems A. B, or C. and when
indicated by removing a token from place 6, and inserting a the transition fired, its content would be inserted into Place
token into both place 7 and place 8. Thus the '"" 1, and thus the transition after I and 2 could fire.
indicates a selection, while the "*" indicates that all exiting resulting in a token being inserted into place 3 (and all
places will be filled. Rejoins of selections and concurrency those to the right of it). The three concurrent Petri Net
are indicated as shown above, branches model the generation of the outputs (only one of

For a selection rejoin (indicated by a "+" on the upper these is numbered for simplicity). The transition after
side of a transition), if there is a token in either place I or Place 3 determines whether an output should be generated,
place 2. when the transition "fires", the token is removed and places a token in either Place 4 (no output is to be
and a token is inserted into Place 3. For a concurrency generated) or Place 5 ( the output X is to be generated).
rejoin (which is actually a synchronization point), when The transition after Place 5 generates the output token X,
there are tokens in both places 4 and 5, a transition can fire and places a token in Place 6; in either case, a token is
which removes both tokens and inserts a token into place now placed at 7. When all of the branches for the
6. calculation of X, Y, and Z are completed, then the

transition after Place 7 determines whether a token is to be
Colored Hierarchical Timed Petri Nets inserted into Place 8 or Place 9. resulting in the output of
Colored Hierarchical Timed Petri Nets are an extension a token corresponding to either condition CI or C2.

of Petri Nets in which:
the tokens can be specified to be of a specific type, and to
contain a specific subset of "data" (e.g., an index);

* the "places" are "bags", i.e., can contain many different
tokens

* the transitions can be specified to take into account the
token types and value-- this allows one to have many
different tokens on a graph to represent processing of
multiple objects, to specify transitions as occurring only n r,.
with tokens with the same index, and to specify the
transition in terms of their transformations for mapping
the input tokens into the values of the output tokens. A 9 C

* a fragment of a Petri Net can be aggregated into a "place"
which preserves the input and output arcs of the fragment
This allows a large problem to be described using a Exhibit 12 Example Petri Net or a Discrete
hierarchy of Petri Nets. Function

a transition can be specified to take a specif., . ount of Thus a DiscreteFunction can always be exactly
time, and can also be used to specify a "timeout". modeled by a Petri Net with input places corresponding to

The mapping of the BD notation onto Colored PezL-i each of its input Discrete and State Items and its input arc,
Nets is fairly straightforward, and can be done in two parts, output places corresponding to the output Discrete and
First, the DiscreteFunctions are mapped onto a Petri Net Stateltems and exit arcs. In a similar fashion, all of the
Fragment; then the BD constructs of sequence, selection, major graphic constu-cts can be implemented using Petri
concurrency, iteration and replication are mapped onto Petri Nets. The result is that any Behavior Diagram can be
Net fragments. mechanically translated into a single large Petri Net, or

onto a Hierarchical Petri Net. A consequence of this
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mapping is that many of the proofs about Hierarchical the expected seqxuences of inputs, functions, and outputs,
Colored Timed Petri Nets can be applied to Behavior the replication of functions, and the comfitions under which 5
Diagrams. the control flows are generated. The mappings of the

The reverse mapping is much more difficult,. -st conditions onto the control flows is imprecise because of
the user may not have imposed the same sort of regular the replications. Hence the reverse mappings onto BDs
structure on the Petri Net as do the DiscreteFunctions of requires the addition of the replication. conditions, and
the Behavior Diagrams. This is analogous to the difference sequencing information projected out on the forward
between structured code in a higher order language mapped mapping. No automated mapping seems possible becaust
onto assembly language - the higher order structurng is of the missing informauon,
projected out when the mapping occurs, and it is quite If executable descnptons are added at the boutom level
difficult to recreate the higher order szructunng from only (e.g., with Petri Nets as is done in ADAS), then the data
the assembly code. flow model is transformed into a set of interacting

concurrent state machines). descnbed nexL
4.4 Mapping to Data Flow Diagram Notations.
A Data Flow Diagram was originally developed to identify 4.5 Mapping to Interacting Concurrent Finite
requirements for non-real time software systems. The State Machines(CFSM). There are a large class of l
notation is similar to IDEFO and N-Squared charts in that models which represent a system as a collection of
it displays the flows between functions. However, it Interacting Concurrent Finite State Machines ýe.g._ VHDL.
contains an additional construct - the "Data Store", defined DFD/ADA.S, CCITT SDL. object models) The key to I
to contain "state information'. The Data Store is defined mapping a BD model onto this style of model lies in the
in Data Dictionaries as "containing " a list of flows (i.e., fact that, when every TimeFuncton is replaced by its
those input to and output from it). Thus the mapping of decomposition Behavior Diagram, the result is a very large
BDs to DFDs requires the identification of Data Stores, and graph containing a number of concurrent branches. Every
the establishment of a "contained by" relationship between concurrent branch is called an RDDProcess which satisfies
state items and a Data Store to which it is assigned. Note the definition of a Terminating Finite Sait Machine.
that this mapping is not unique, but can be made to be Every RDDProcess is enabled by some other process,
complete (i.e., every state item is contained in some Data receives items from and sends items to other
Store). With these definitions, a Data Flow Diagram can RDDProcesses.
be constructed from a BD by: To turn this graph into a collecuon of Concurrent

- defining a DFD process for each BD Function FSMs requires that each RDDProcess be mapped onto an
• assigning state items to Data Stores FSM "component". This yields one FSM for each
• representing the input/output relationships as labeled replicated RDDProcess. The interface design is then

arrows between the processes and/or Data Scxres constructed to represent the passing of enablements along I
A set of "Control Flows" between the processes can the BD Graph of RDDProcesses as the passing of

be obtained fro- the BD graph by representing each messages between the resulting FSMs. This means that Ienablement between functions as a Control Flow between each RDD Process, when terminating in the start of a

processes. An example of such a mappings are presented concurrency, would "send an enablement message" to the
below, indicated FSMs; the FSMs would be augmented with a

function to accept the enablement message to get started.

An example of this process is presented in the figureI
be-low.

I I

Repliate oordinate

C1 .... I I

Exhibit 12 Example Data and Control Flow Exhibit 13 Example Concurrent Processes
Diagrams

This mapping has been prototyped for VHDL. Exch
The BD information not represented on these diagrams arriving item is modeled in VHDL as a "signal", and the

includes the identification of the "observable" items input invocation of each DiscreteFunction in an RDDProcxcss is
to and output from the systcm boundary (although this equivalenrt to the "call" of a prsTedurc in VHDL. Thus the
might be represented in textual descriptions of the flows), RDDProccsscs map to VHDL. proxercs, and the sequence
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of functions in RDD maps to a sequence of functions in AlD of the multiple state machines can then be
VHDL. coUapsed into a single state machine with paruined sauis

The information lost by this mapping is the hierarchy (i.e.. one partition per state machine). If many repicaLes
itself (which provides the reader with the ability to are collapsed into a single state machine. then the interface
understand the intended sequences of actions), the expected function must determine which replicate is appropria to

sequences of inputs, and the identification of the expected the input message. and invoke the appropinate function.
sequences of normal processing. This is equivalent to the SREM notauon. Similarly, a

The loss of the sequencing information turns out to be "box' notation of Mills can be similarly obt~aned.
crucial. Even though the sequences of externally The reverse notations share the same problems as the
observable inputs and outputs can be recreated by hitting concurrent state machine notations. One must hit theS the collection of FSMs with a number of "test vectors', single state machine with a number of test vectors to
this process is extremely time consuming. Moreover, if unfold" the processing into the intended sequences of
each of only 20 FSMs has but 10 states, then the functions, and then in addition idenufy the allowed

I dimensionality of the states of the combined state concurmecy of operations.
machines is on the order to 10"020 -- far to large to
systematically explore in a limited amount of time (and the 4.7 Conclusion -- Automated Mappings
dimensionality of 200 FSMs is on the order of 10"200). Are Possible, and Mandatory. The primary
In its original hierarchy form, most of these states are conclusion drawn from the above is that it is possible to
observed to be impossible (i.e., a state of an FSM is not provide automated support for the mappings from the RDD
meaningful until it is enabled). systems engineering notation into the various software

1 Thus the reverse mapping (from CFSMs to BDs) engineering notations. Much of the transformation is
requires the effort of recreating the expected sequences of automated, but some require the addition of notation
inputs and functions, and no automated technique is known peculiar information (e.g.. identification of "control flows"
to exist. in IDEFO, identification of "data stores- for DFIDs). but

some faults can be automatically supplied (e.g.. all flows
4.6 Mapping to a Single Extended State art "data flows" for IDEF0. all state items contained in an

Machine (SREM, Mills box notation). Both the RDDProcess are assigned to a default -data store-). The
S REM and the Mills box notations are variants of availability of such mappings strongly suggests that the
descriptions of a single state machine representation of a use of RDD at systems engineering time provides a
system. In both cases, the system is described as having a solution to the "Babel of Notations" problem. i.e., any of

I single state, and the arrival of a input item yields the these notations can be obtained by automated means.
generation of an output item and a transition to some next The reverse mappings appear to be much more
state. The state machine is extended to allow an output difficult, requiring the addition of significant amounts of
"event" to become a subsequent input item. It is expected information not contained within the software engineering

S that an input will be completely processed before the next notations. In fact, the reverse mappings for the Petri Nets
input is accepted, and the concurrent finite state machines require the re-

Mapping the BD onto a single state machine requires creation of the structuring informauon -- a notoriously
several transformations. First, the set of concurrent state difficult task.I machines is obtained by recursively substituting BDs for
functions and hence eliminating the hierarchy constructs.
Next, the concurrent state machines are "serialized" by the3 addition of an external serializing function which does not 5.0 DISCUSSION
allow the next input to arrive until the previous input has Although a smooth interface is required from Systems
"w-en completely processed. to Software engineering, the way in which the two

' The multiple state machines (and their interactions) disciplines have grown in the past 25 years has not
l could be viewed using various object notations. Note that satisfied this requirement- A number of problems with the

each concurrent branch of behavior has given rise to a state interface have been identified, and some approaches for
1 machine which encapsulates the state information passed solutions have been discussed.

_ down the branch of processing. The mapping of the RDD Systems Engineering
Each of the multiple state machines can be collapsed notation onto several software engineering notations

from a Moore model into a Mealy model by "stateizing" suggest a solution to the "Babel of notations" problem. It
3 the location of the token indicating which function is also provides some valuable insights into the benefits and
W active. This is equivalent to adding a variable with drawbacks of these software engineering notations (e.g.,

enumerated values (i.e., the names of the active functions), the lack of hierarchy, the lack of support for a separation of
then adding an initial function which accepts the input, concerns of normal from exceptional behavior, the lack ofI determines the current state, then activates the appropriate representation of desired sequences of functions may
function with appropriate state information, provide some explanations for why the specification of
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required software behavior has been so notoriously
difficSe a o

Several open issues have also been identified: the

necessity for a CBSE discipline to perform all of the
functions of distributed design, and the necessity for 5
software development methods to demonsuate preservation
of allocated executable black box level behavior. It is
suggested that software design methods approaches which
describe constructive steps for allocating required I
processing onto units of code (and simultaneously prove

that the behavior has been preserved) may provide a
possible solution to this problem. 5
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Abstract

This paper describes START/ES, an expert system based tool for performance and reliability analysis
of complex computer systems. START/ES provides an iconic system design capture interface, which
allows direct manipulation of system design attributes and facilitates the exploration of a wide range of
design alternatives. System design descriptions are automatically translated into mathematical models,
which evaluate candidate designs in terms of both performance and reliability. Evaluation results can
be analyzed by the automated reasoning component of the tool, which uses a rule-based approach to
diagnose performance and reliability problems, and to recommend design changes for achieving
system designs which are compliant with all requirements. Finally, the rule base is extensible and can
be modified using START/ES's rule builder interface.

1. Introduction

Performance and reliability are key aspects of system effectiveness which must be considered during
the design of mission-critical computing systems. Automated tools are needed to address the
complexity of design alternatives, and to provide quantitative evaluation of system performance and
reliability characteristics. The complexity of the interactions between design attributes is such that
automated assistance is helpful in interpreting evaluation results, and in exploring the implications of
alternative design strategies.

START/ES (for System Timing And Reliability Tool - Expert System) is an expert system based
automated tool that addresses design verification of mission-critical computer systems. This paper
summarizes the tool's capabilities for describing, evaluating, and analyzing systems.

The paper is organized as follows. Section 2 provides an overview of the primary components of
START/ES. Section 3 summarizes the elements of START/ES system design representations. Section
4 describes the system design evaluation results produced by START/ES performance and reliability
models. Section 5 discusses the START/ES expert system component, and provides examples of the
types of design assistance produced at various stages of the automated reasoning process. Section 6
describes the START/ES rule builder interface which allows experts to modify the automated
reasoning capability.

2. START/ES Overview

Figure 1 shows the relationship between the major components of STA RT/ES. A number of different
interfaces are provided to allow interaction with the tool by both system designers and by performance
and reliability experts.
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Figure 1: START/ES Components

The system description data base contains information related to the attributes and organization of
hardware, software, and functional elements of a candidate system design. This information is entered
using the graphical design capture interface originally developed for the START tool for integrated I
performance and reliability analysis [1I].

The performance and reliability models provide analytic computational capabilities which transform
system descriptions into quantitative indicators of system reliability and performance. These
computational capabilities were also originally developed for the START tool. Top-level results
produced by the models are displayed to the user as annotations on system description drawings. 3
The expert system component provides design assistance using expert system technology provided by
the "C" Language Production System (CLIPS) shell [2] embedded within STARTIES. Thefact base
containing system description and evaluation results data is queried during execution of the CLIPS I
inference engine, which exercises the automated reasoning process encoded in the rule base.

The expert system rule base is partitioned into three rule sets, each concerned with providing a
particular type of design assistance: I

"• Compliance assessment rules determine whether a candidate system design meets its
requirements. These rules compare top-level performance and reliability results against the I
corresponding requirement values specified in the system description.

"* Problem identification rules identify the sources or underlying causes of performance and 3
reliability non-compliance. These rules examine "causally factored" evaluation results, which
indicate the contributions to delay and faill ,. likelihood associated with specific system design
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elements. Elements which are found to be significant contributors to non-compliance are
asserted to be performance and/or reliability problems.

- Design change recommendation rules identify system design changes which will correct
identified performance and reliability problems, and thus move a system in the direction of
compliance with all of its requirements. The user can investigate the quantitative impact of
recommended design changes by re-specifying appropriate system design constructs or
parameters, and then re-executing the models.

Modification and extension of the rule base is accomplished using the "rule builder" interface. This
interface allows rules to be expressed in an "English-like" manner more natural to an expert than the
pattern matching syntax used in CLIPS. Various rule base maintenance utilities are also provided to
assist the expert.

3. System Design Description

START/ES responds to the need for improved accessibility to performance and reliability modeling
techniques, including consideration of the interaction effects between performance and reliability [3].
Intended users include system designers and analysts requiring performance and reliability design
verification of mission-critical computer systems. These users are concerned with exploration of a
broad architectural design space and verification of design alternatives. For this intended usage the
architectural variant [41 level of design description is used in START/ES to expedite the analysis of
performance and reliability.

The system description component of START/ES captures elements of a system design relevant to
evaluation of performance and reliability characteristics. A graphical interface allows the user to specify
the attributes and organization of the functional, software, and hardware components of the system.

System Functionality and Requirements

The basic functionality of a system is represented in control flow diagrams called stimulus control
flows (SCFs); these indicate sequences of primitive functions which are triggered by arrival of an
internal or external stimulus, and which typically result in one or more corresponding outputs.
Primitive functions are connected by directionalflow connectors which indicate the amount of data that
is exchanged between functions. When multiple flow connectors emanate from a single function, path
probabilities are assigned to these connectors to indicate the relative likelihood that each path is taken
by an arriving stimulus.

System performance and reliability are measured relative to sequences of primitive functions delineated
within SCFs by stimulus-response markers. The serial set of processing activities within the scope of a
particular stimulus-response marker is referred to as a response thread. Figure 2 illustrates the
graphical user interface that is used to define SCFs and stimulus-response markers.

System performance and reliability requirements are specified for response threads and for system
resources (hardware devices and tasks). A response time requirement and an availability requirement
are specified for each response thread. Utilization limits are specified for each hardware device and
task in the system description.

Software and Hardware Components

Each primitive function within an SCF is attached to a software module which indicates the types and
quantities of computing services needed to implement the function. Software modules are grouped into
dispatchable units of software called tasks. The software functionality of the system is mapped onto
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hardware by allocating tasks to specific hardware devices appearing in a hardware architecture I
diagram.

I~EmersencH Command Processln

o I

Figwre 2: Stmulus Control Flow

The hardware architecture diagram identifies all of the processors, communication devices, and storage I
devices used in the system, and indicates how these are interconnected. Figure 3 illustrates the
graphical interface that is used to define hardware architectures. 3

17 1

Table 1 lists basic performance and reliability parameters that are specified for each hardware device inthe hardware architecture diagram. II
In addition to device processing rates, system performance is affected by system service overhead rates
for intertask communication, intercomputer communication, and data access; these are represented as
attributes of operating systems specified for each processor, communication protocols specified forag
each communication device, and processor overheads specified for each storage device. th

The hardware redundancy parameters specified for each device define a hardware subsystem i
consisting of a set of identical units which are designated either active or backup. it is assumed that the I
total processing load on the subsystem is shared by all active units, and that backup units are held in
reserve to replace active units that fail. In c mch subsystem, detection latency represents the mean time to
detect the failure of a unit, while recovery time is the mean time to bring an inactive unit into the active

configuration.
The transient error rate specified for each device indicates the rate at which faults occur during use of
the device which cause incorrect outputs to be produced, but which do not require physical repair It
actions to be performed. Subsystem error recovery options include temporal repetition, in which
operations are repeated "temporally" on each active unit until two matching outputs are produced, and
N-modular redundancy (NMR), in which operations are replicated in parallel on each active unit, and a i
voting mechanism is used to detect and mask erroneous outputs.
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Figure 3: Hardware Architecture Diagram

Table 1: Performance and Reliability Parameters

Processing rate Processors - Speed (in MIPS), muhltplicityCommunication Devices - Transfer rate, multiplicity

Storage Devices - Transfer rate, access latency, multiplicity

Reliability Mean time to failure (MTTF), transient error rate

Maintainability Mean time to restore (MTTR)

Hardware Number of active units, number of backup units
redundancy Detection latency, recovery time

Error detection Temporal repetition (Yes/No)

and correction N-modular redundancy (Yes/No)

1; 1it5 1 4 i ý Kip ý ! REk ;IaI i ,t- 11

Hardware subsystems can be used to represent many different configurations, each of which provides
some degree of standby redundancy, extra processing capacity, or error detection and correction
capability. Table 2 indicates parameters that would be specified for some commonly used
configurations.

START/ES also provides a means to account for the unreliability of software. A mean executions
between failure (MEBF) parameter may be specified for each software module, indicating the meannumber of invocations of that module between functional failures caused by a software design fault

(5].
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Table 2: Hardware Subsystem Configurations I
Configuration Hardware Subsystem Specification

Simplex system (no redundancy) Number active. 1 Number backup- 0
Duplex system Number active = 2 Number backup - 0 NMR seleded
Triple modular redundant system Number active - 3 Number backup - 0 NMR selectedHybrid redundant system Number active > 2 Number backup a 1 NMR selected
Loadsharing system Number active a 2 Number backup - 0
Standby redundant system Number active > 1 Number backup 2! 1
Master/slave system Number active - 1 Number backup - 1

I
4. System Design Evaluation

START/ES automatically translates system design descriptions into mathematical models, then I
executes these models to obtain measures of system performance and reliability. Behavioral
interrelationships between performance and reliability -- such as service degradation due to permanent
hardware failure ("performability") and utilization of processing resources by error recovery I
mechanisms -- are accounted for through parametric interchange between the models of each type. The
primary performance and reliability measures that are computed are as follows:

" Thread service time - the total elapsed execution time during realization of a response thread.
This result represents the minimum achievable response time, given the service demands within
the thread and the inherent service rates of the hardware devices used in fulfilling those
demands. System overheads associated with intertask communicatior, communication protocol
processing, transient error recovery, and other services are applied as appropriate in calculating
thread service times.

" Device utilization - the total (offered) load placed on a hardware device. For each hardware
device, this result is defimed as the total of all service demands (per unit time) on the device
divided by the device's service rate, and is expressed as a percentage. Values greater than 100%0/
indicate an unstable situation in which a device has insufficient capacity to handle the load placed
on it; in the long run, queues for such a device will grow without bound.

" Thread availability - the probability that a thread is completed successfully. Successful I
completion requires that operational hardware devices are available to accept all constituent
service demands, and that no uncorrected transient errors or software failures occur during
realization of the thread. I

Additional performance and reliability results that are calculated, and which can be displayed at the
user's option, include: 3

"* Function service time - the total elapsed service time during completion of all service demands
within a single primitive function in an SCF diagram. 3

" Device availability - the probability (at an arbitrary instant of time) that a particular device is in an
operational state. When a device consists of a multi-unit subsystem, this availability result
represents the probability that at least one of the units within the redundant configuration is I
available to accept arriving service demands.

3
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Figure 4 shows an SCF diagram on which response thread service time, response thread availability,
and function service time results are displayed. Figure 5 shows a hardware architecture diagram in
which each device is annotated with device utilization and device availability results.
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Figure 4. Thread Service Time and Availability Results
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Figure 5: Device Utilization and Availability Results
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a
Causally Factored Performance and Reliability Results

The automated reasoning component of START/ES requires not only top-level measures of
performance and reliability (e.g., for assessing compliance with requirements), but also lower-level
measures which indicate the contributions of individual design components and attributes to response
thread delays and failure likelihoods. Such measures are needed during the problem identification
reasoning process, which attempts to isolate the root causes of performance and reliability shortfalls. I
In order to obtain this information, causally factored performance and reliability data is collected during
execution of the design evaluation algorithms.

Factored performance results. During performance computations, START/ES traces through control
flow diagrams in order to accumulate the total service time within the scope of each response thread,
and the total utilization of each hardware device. These accumulations are based on "atomic" service
time events that are implied by individual service demands occurring within the control flows. For each I
atomic service time event encountered, a data record containing various numerical values, as well as
qualitative information regarding the context within which the service time event occurred, is created
and stored. When performance computations are complete, the set of all of these records serves as a I
data base of factored performance results, from which the contributions to thread service times and
device utilizations associated with various design elements can be reconstructed during execution of the
automated reasoning component. 3
Specific context elements attached to service time values include the dispatchable unit of software
(task) within which the service time event occurred, and the type of application or system overhead
operation being performed (e.g., instruction execution, intertask communication, intercomputer I
communication, remote data access, local data access). Due to the emphasis of START/ES on
reasoning about performance/reliability tradeoffs, it is essential that processing delays directly related
to the use of fault tolerance capabilities be identified, for example, the ( ..t element "transient error
recovery" is attached to service times incurred during replicated operations associated with error
detection and correction.

Figure 6 illustrates the performance data collection process. The information recorded for each service 3
time event includes the service time value itself, the applicable flow arrival rate, the device on which
the event occurred, and the attached context information. Note that the elements of context attached to
individual service time values may be embedded within one another, for example a remote data access I(a "GET" operation) which includes intercomputer communication (ICC) between two processors will
have both the "GET" and "ICC" context elements attached,

The context-based recording scheme used for factored data collection provides a great deal of flexibility I
ior generation of the basic facts upon which the expert system operates. New elements of context are
easily accommodated, and since the context attached to each service time value is of arbitrary length,
contextual information can be recorded to any level of depth.

Factored reliability results. Thread availability for a particular response thread is defined as the
probability that all constituent service demands within the thread are successful, which in turn requires I
that all of the following are true: (1) all service demands are successfully accepted on an operational
unit within a hardware subsystem, (2) no uncorrected transient errors occur during execution on any
operational unit, and (3) no software failures occur during execution of any software module invoked
by the thread.

During thread availability calculations, the following are recorded for each response thread: (1) the set
of hardware subsystems required, (2) the probability of one or more transient errors occurring during Iexecution on each subsystem unit actually used, and (3) the probability of one or more software
failures occurring during execution of each software module invoked. This information, together with
availability results calculated for each hardware subsystem, allow overall thread availability to be 3
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calculated. At the same time, thread availability results are factored according to the relative
contributions of the basic sources of functional failure, or "failure classes": hardware unavailability in
hardware subsystems, uncorrected transient errors on active units, and software failures in software
modules.

I Service Arrival
Time Rate
S• ,(per...f sc)Device Context Information

0.5 0.1 CPUI Task 1 Execute(CPU1)
0.2 0.1 CPUI Task 1 GET(CPUI, File2) ICC(CPUI, CPU2)

Primitive 0.1 0.1 BUS Task 1 GET(CPU1, Fiie2) ICC(CPU1, CPU2)
Function - 0.2 0.1 CPU2 Task I GET(CPU1, File2) ICC(CPUl. CPU2)

0.1 0.1 CPU2 Task 1 GET(CPU1, File2)
0,6 0.1 DISK1 Task 1 GET(CPU1, File2) READ(DISK1)

S~Flow

Connetor L 0.2 0.1 CPU1 ICC(CPU1. CPU2)
---- 0.1 0.1 BUS ICC(CPU1, CPU2)

0.2 0.1 CPU2 ICC(CPU1, CPU2)

Primitive -.... [ 0.4 0.1 CPU2 Task 2 Execute(CPU2)IFunction

I Figure 6: Context-Based Data Collection

IThe unavailability contribution of each failure class to the total unavailability of a given response thread
is defined as the total amount of unavailability in the thread which could be reduced by decreasing
occurrences of failures of that type, i.e. as the difference between the availability of the thread given
that failures of that type do not occur, and the availability of the thread as calculated. These
unavailability contributions are normalized so that the set of contribution factors assigned to the various
failure classes sum to unity:

Contribution factor (Class i) = Unavailability contribution (Class i)

XUnavailability contribution (Class j)

Hardware unavailability results are further factored to quantify the contributions of three basic causes
of hardware unavailability. Maintenance downtime is unavailability due to all units in a device
subsystem being in repair. Reconfiguration downtime is unavailability due to switchover of backup
units into active service. Detection latency is unavailability caused by attempts to assign service
demands to a unit which has failed, but whose failure has not yet been detected by the system. The
contribution factors assigned to each of these failure subclasses, as a proportion of the contribution
factor assigned to hardware unavailability for a particular device subsystem as a whole, are determined
from the steady-state solution to the mathematical availability model upon which subsystem availability
results are based:
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Contribution factor (Subclass k) - je( s x Contribution factor (Hardware unavailability)

where Pj = steady-state probability associated with subsystem state j

Sk = set of subsystem states corresponding to type k unavailability

and AS = subsystem availability

5. Expert System g
The START/ES automated reasoning component is implemented using the CLIPS expert system shell.
System description and design evaluation results, represented as CLIPS facts, are queried during
execution of the rule base, which is also encoded in CLIPS. 3
The rule base is partitioned into three rule sets. These rule sets are designed to be executed
sequentially, so that the information generated during each reasoning stage can be accumulated and
used during subsequent stages. The results of each stage are also displayed to the user.

Reasoning Stage 1: Compliance Assessment

Compliance assessment rules compare top-level performance and reliability results for each response 3
thread to the corresponding user-specified requirement values. A system is asserted to be non-
compliant if at least one response thread in the system is non-compliant. After all defined response
threads have been checked for compliance -- which in a system containing many critical functions may
involve a large number of comparisons -- a list of non-compliant threads is displayed to the user, as
illustrated in Figure 7. 3

Expert System Results 2i

compliance *ssesment ----------

Thread Real time telemetry response is honcompliant vrt availability

Thread Emerqency Commend Reiponse is noncomp)iant wrt I
device Datebse Disk utilization

_-TIN
Figure 7: Compliance Assessment Results 3

A response thread is considered to be non-compliant with its performance requirements if either (1) the
computed thread service time exceeds the thread response time requirement, or (2) at least one device
or task used by the thread exceeds its resource utilization limit. In the first case, the thread is asserted
to be non-compliant with respect to service time, and in the second case, the thread is asserted to be
non-compliant with respect to utilization of the device or task. The reasoning behind this approach is
that if thread service time exceeds the required response time, then the thread cannot possibly meet its I
response time requirement. However, if the service time is less than the response time requirement, the
thread may still fail to meet its requirement -- due to contention effects -- if the utilization of one or
more resources used during execution is high. This approach allows compliance with performance
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requirements to be assessed using an analytic modeling approach which avoids explicit analysis of
resource contention effects.

A response thread is considered to be non-compliant with respect to availability if the calculated
availability of the thread -- indicating the probability that all service demands within the thread are
completed successfully -- ,-- less than the thread availability requirement.

Reasoning Stage 2: Problem Identification

For each non-compliant response thread identified during the compliance assessment reasoning stage,
problem identification rules examine causally factored design evaluation results to determine the most
significant contributors to performance and reliability shortfalls. Because the context information
attached to causally factored results is of arbitrary depth and complexity, the number of different
design elements which must be considered as potential contributors may be quite large. The ability to
isolate system components and design features that are most critical in terms of meeting requirements --

from among such a large set of potential elements -- is perhaps the most useful aspect of the problem
identification results provided by the expert system to the user (Figure 8).

- . Expert System Results

prOblem identification ---------------

WRITE (Database Disk) is a device utilization problem for
device Database Disk

PUT (Dataobse Server CCSDS Data Store) Is 6 device utilization problem for
device Database Disk

Hardware unavailability on device Comm Processor

is an availability problem for thread Real time telemetry response

Hardware unavailability on device Telemetry end Command Processor
Is an avallabllity problem for thread Real time telemetry response

tMalntenance downtime on device Comm Processor
is an availability problem for thread Real time telemetry response

Maintenance downtime on device Telemetry end Command Proces.r
is an availability problem for thread Real time telemetry response

Figure 8: Problem Identification Results

Given that a particular response thread is non-compliant with respect to either service time or utilization
of a resource, design elements associated with a large percentage of the amount of non-compliance are
identified as service time problems or as utilization problems. Design elements which may be identified
include individual hardware devices, fault tolerance overheads, and system service overheads such as
intertask communication on a processor, intercomputer communication between two processors,
remote data access between a processor and a data file, and local data access on a storage device.

Given that a particular response thread is non-compliant with respect to availability, failure classes
which contribute most significantly to thread unavailability are identified as availability problems. The
significance of failure class contributions is assessed based on the unavailability contribution factors
computed for the thread. Failure classes which may be identified include hardware unavailability,
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maintenance downtime, reconfigunition downtime, detection latency, or uncorr.ted transient errors, (M
a hardware device, and software failures in a software module.

Reasoning Stage 3: Design Change Recommendation I
Design change recommendation rules employ expert judgements in attempting to recommend design
changes which will reduce the magnitude of one or mome identified problems, and thus move the
system in the direction of compliance with its requirements. A primary goal of the recommendations
produced is to assist the designer in understanding the sensitive tradeoffs that attend various design
choices, including the subtle interactions between performance and reliability behavior. Figure 9 I
illustrates a set of recommendations produced by the expert system; these recommendations include

design changes in both the performance and reliability areas, and address inherent device
characteristics as well as system-level architectural issues. 3

dosp ......... [Import Syjstem mesults 3
4"f Mro rcommnuvdeti.- -

Reommenil Incro•utq multtpitcttV of totebess Ditk to decrewo uttltitita

Recommend Incressiwr 1TVT or decrbesii mVTTR of Cemm Prwomr to rodwgs 3
downtime.

Reomnmend oddng one or mere bockuap wn4I, to Comm Processor su~bsystem tW Owces"

Recammend Inc roostrq H"F or decrotan MTKR of Tolometr end Commend Procw3
to reduce •mntime.

Recommend ddtnq era or mare beckup vmnb to Telometry end Commend Prcessor
subsystem to docreose downtime.

Recommend aweng Mttorv Log or o portion of It from Dotebose Ditk to mother store"
device on the ome rtle.

Recommend possi ble restructorl ng of 4t in C• SC4 Dot. Store to rodyxe either the

number of cceosses or the volume of dote to oce3s

Figure 9: Design Change Recommendations 3
The design change recommendation rule base can be divided conceptually into six areas, each of which
pertains to a particular set of system design issues: U

" The hardware characteristics design area is concerned with inherent hardware device
performance and reliability attributes. When performance problems have been traced to a
particular device, rules in this area suggest improvements to such characteristics as device
processing speed and multiplicity. Similarly, when reliability problems have been traced to a
particular device, improvements to the basic device attributes Mean Time to Failure (MTTF) or
Mean Time to Restore (MTTR) are recommended.

" The task structure design area is concerned with packaging of software into tasks, which are the
lowest level of concurrency represented in START/ES. Rules in this area focus on such 1
performance issues as the degree of parallelism that can be achieved through various partitioning

schemes, versus the amount of intertask communication overhead incurred in each case.

I
314 3



I
I

The fincrional and data allocation design area is concerned with the assignment of tasks and dam3 files to hardware devices. Alternative assignment schemes may affect many different
performance indicators, including thread service times, device utilizations, and intercomputer
and intertask communication overheads. Task and file allocations may also affect reliability, in
that alternative assignments may introduce different sources of unreliability into response
threads which require the use of the devices to which tasks and files art assigned.

" The hardware subsystem structure design area is concerned with the pcrforrnance and reliability
implications of alternative hardware redundancy structures and redundancy management
capabilities. Rules in this design area address the selection of subsystem design parameters
including the levels of active and standby redundancy employed -- which will achieve the best
overall balance between subsystem performance and reliability effects.

" The transient error recovery design area is concerned with the performance and reliability
implications of alternative transient error detection and correction schemes. Rules in this area
attempt to balance the amount of coverage provided for transient errors with the amount of
additional processing time and resource utilization caused by replicated operations.

* The software reliability design area is concerned with the effects of inherent software module
reliability on response thread unavailability.

As an example of design change recommendation reasoning, consider a hardware subsystem which
has been identified as a utilization problem. If this subsystem contains at least one backup unit, then
the effective load on the subsystem can be reduced by using one or more of these backups in active
mode. However, doing so may increase the overall failure rate of the subsystem, and thus increase
overall downtime. Thus, provided that maintenance downtime on the subsystem is not already an
availability problem, it is recommended in this case that a backup unit be used for active processing:

3 IF Device D is a utilization problem; and
Maintenance downtime on Device D is not an availability problem; and
Number of backup units in Device D subsystem L 1;

THEN Recommend changing one or more Device D subsystem backup units to active units to
increase service capacity.

As another example of a design change recommendation rule, consider a device on which uncorrected
transient errors are an availability problem. If there is only one active unit in the device subsystem
(thus precluding the use of N-modular redundancy with the existing hardware), then it is
recommended that a temporal repetition scheme be used to detect and correct errors. However, since
using that scheme will significantly increase service times on the device, this recommendation is only
made if the device is not already a service time problem:

IF Uncorrected transient errors on Device D is an availability problem; and
No error recovery scheme is selected on Device D; and

Number of active units in Device D subsystem = 1; and
Device D is not a service time problem;

THEN Recommend using temporal repetition on Device D to reduce failures caused by
uncorrected transient errors.

I
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6. Rule Builder Interface U
Recent experience with a rule-based expert system tool for performance analysis 16, 7] indicated that
the utility of such a tool is greatly enhanced if the capability to specialize, extend, or otherwise modify
the rule base is provided for the expert user. For START/ES, this capability is provided for the design
change recommendation portion of the rule base. Access to these rules is provided by the rule builder
interface.

The rule builder interface is based on an "English-like" rule language that allows rules to be expressed
in a manner more natural to the expert than the pattern matching syntax used in CLIPS. The translation Ifrom rule language forms to internal CLIPS rule representations is handled automatically. Figure 10
illustrates the dialog used to edit rule clauses, in which "pop-up" menus are used to provide access to
alternative selections for various rule components. 3

IF fhardware noualra-lblliy on [oardwore deUice to be ca eda *

DIIl Ksn auevlebnM proalem orl
fthrend to bece E ti i 3

Figure 10: Rule Editing Dialog

The rule builder interface is supported by various utilities designed to assist the expert user. These
include the ability to search the rule base for specified character strings, the ability to create, load, and
save alternative rule bases, and the ability to stop and resume expert system execution at the point at 3
which a specified rule fires.

As an example of the way in which the expert reasoning capability may be extended, consider a
situation in which several response threads do not meet their availability requirements, and in which
several different devices have been identified as availability problems. Currently, the design change
recommendation rule base will recommend that the inherent reliability of all of these devices be
increased. A natural extension would be to identify devices whose unreliability is particularly I
problematic -- and which are therefore prime candidates for improvement. For example, a rule could be
formulated which would find devices that are availability problems for more than one response thread,
and recommend improving the reliability of these devices frst, before considering those which affect I
only a single thread.

Conclusions I
START/ES provides automated interpretation of performance and reliability model results. Using
expert system technology, it identifies problems and recommends design changes. Initial evaluation 3
with small scale system designs has shown the potential value of the expert system based approach.
START/ES has been able to process causally factored model results and isolate the causes of non-
compliance with performance and reliability requirements. Its recommendations, when interpreted by
the user in the context of the current system design, provide valid guidance in converging on a fully
compliant design.
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At the same time, early use has revealed the need for further research and enhancements. In the area ofi system description, an ability to define specialized system design elements and their performance and
reliability behaviors would be a valuable addition. In the area of performance models, a simulation
capability is needed to evaluate contention effects more robustly than the current analytic model. In the
area of the expert system, the rule builder needs to be extended to access all system description
elements and model results. The rule language needs to be more comprehensive in terms of its logical
expressiveness. Finally, START/ES needs to be evaluated on real-world problems of scale. These
issues represent future work related to START/ES and, more generally, expert system applications toE performance and reliability modeling.
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I Abstract

An overview of a formal approach is presented for mapping a specification of a
real-time system onto a design space of abstract "locations," consisting of hardware,
software, communication components and human interfaces. The specification is as-
sumed to be given in terms of a "hierarchical multi-state (HMS) machine," which
is obtained by integrating an advanced type of state model with an interval-based
temporal logic. Formal verification techniques and correctness-preserving or partially
correctness-preserving transformation methods are two of the promising approaches for
maintaining properties of a specification in the transition to design. The location con-
cept also provides the means for deriving data exchanges and performance requirements
on the design components of a system as progress is achieved towards implemenr.t ion.

Keywords - Real-time systems, specification, design structuring, allocaton of re-
quirements, system modeling.

1 Introduction

While numerous specification and design methods for real-tim'.: systems have been investi-

gated in the recent past, little progress has been made in formalizing the transition from
specification to design in a way that guarantees the preservation of temporal properties.
Standard design methodologies for real-time systems (e.g., JHP87, WM86]) depend entirely
on informal methods, usually based on finite-state machine extensions of data flow diagrams.
Since finite-state machines easily become intractable for even relatively simple systems, such
representations are usually confined to the definition of simple local control conditions, with

*This work was supported in part by the Office of Naval Research under contract N00014-92-C-0047.
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no hope of offering even a simulation-based analysis of behavior. Other methods sudl as
DCDS [A1851 have addressed the simulation aspects, while various fornal methods for spec- I
ification and verification of real-time systems have been proposed in the literature (see, e.g.,
jGa91aj and accompanying articles). Executable formal specification methods usually also
provide simulation capabilities. However, it is wel-l:nown that simulation is simply inade- I
quate for guaranteeing correctness.

The key stages in the transition from specification to design are (1) the structuring or
partitioning of the specification space. (2) the definition of a design space, (3) the definitiol i
of a mapping from the specification space to the design space, and (4) the formal derivation
of design requirements from the specification requirements. Success in the development of
a formal basis for these four stages depends on the ability to define precise mathernatical I
formulations of the specification and design spaces and the mappings between them.

The purpose of this paper is to present some preliminary ideas on the use of the "hier-
archical multi-state (HMS) machines" [GF88, G190, GF91, 0190, Ga9laI in formalizing the
transition from specification to design. HMS machines are obtained by integrating parallel
and hierarchical automata with a temporal interval logic, called TIL, to provide a formal
methodology for specifying the behavior and requirements of hard real-time systems. Several
independent formal methods for verifying "safety properties" of HMS machine specifications
have been developed so far. The correctness-preserving transformations of fFG891 and the 3
model-based theorem proving of JGI91, Ga91bl provide refutation based verification capa-
bilities that, in general, avoid the need for complete enumeration of behavior. The model
checking of (G1921 and the interacting computation graphs of fI191J offer manageable ap- I
proaches to enumerative verification.

To deal with the transition to design, we propose the partitioning of the state space of
an HMS machine representing the behavior of a system into a set of "locations." A location I
is an abstraction of a piece of hardware, a software program, a communication medium or a
human interface. Since an implementation creates its own requirements beyond the system
requirements, a process of refinement is usually necessary that expands the specification
and creates an extension of the original HMS machine. In addition, two other elements
of an HMS machine must be mapped into the space of locations: (1) "transitions" that 3
define what changes in states can occur in an HMS machine, and (2) "controls" consisting
of TIL predicates that define constraints on transitions. The derivation of data interchanges
and temporal requirements on the design space is derived essentially automatically once the
space of locations is defined. The key problem that remains is to verify that the refinement
satisfies the requirements. This can be accomplished in several ways. One approach is to
employ transformations such as those in fFG89, C192] that preserve or partially preserve I
behavior. Another method is to verify formally that key safety properties are preserved
in the refined machine using one of the available verification methods for HMS machines.
A third approach not considered here, which is commonly used in the context. of process 3
algebra, is bisimulation, in which one attempts to prove that the two specifications have
identical behaviors.

In Section 2 of this paper we present an overview the basic concepts of HMS machines
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and in Section 3 we employ the specification of a simple railroad operation to give an outline
of our approach for transitioning a specification to a design. In the process, we also present
our visual notation for representing HMS machines. In Section 4 we offer a brief sumiininary
and the conclusions.

2 Background and Definitions

We begin by defining the non-hierarchical version of a specification formalism that integrates
a parallel version of automata with an interval-based temporal logic. Formally, we define a
discrete-time, boolean "multi-state (MS) machine" as a triple H = (S, ['D, EN), where

1. S is a set of "states," any number of which may be true or "marked" at a moment of
time.

2. PD and FN are, respectively, the sets of "deterministic" and "nondeterministic" tran-
sition of H. Each deterministic or nondeterministic transition is of the form

(PRIMARIES) (CONTROL) - (CONSEQUENTS),

where PRIMARIES C S, CONSEQUENTS g S and CONTROL is a predicate on the
history of the states, expressed in a temporal interval logic called TIL. For a transition
u, each state in the associated PRIMARIES (CONSEQUENTS) set of state will be
called a "primary" ("consequent") state of u. Also, the predicate CONTROL for u
will be called the "control" or "control predicate" of u.

3. A transition is "enabled" if its primary states are all true and also its associated control
predicate is true.

4. At each discrete moment of time all the enabled deterministic transitions and a subset
of the nondeterministic transitions "fire," causing changes in the marking of the states.

The set of hierarchical MS machine or "HMS machines" is the superset of the set of
MS machines when some of the states are replaced by HMS machines. The details will not
be presented in this paper. For definitions of recursive hierarchies and the use of different
granularities of time at different level of hierarchy, see [Ga9la, G192]. Extensions involving
non-boolean states that accommodate data flows can be found in [G1901.

The behavior of a real-time system can be specified in terms of an HMS machine by
representing its attributes as hierarchical states, with the control predicates defining the
logical and temporal constraints under which changes in the system occur. We note that in
an HMS machine nuay states can be true at a moment of time. In general, this results in
significant reduction in the number of states compared to traditional finite-state machines.

We now present a notation and formal definitions for the temporal interval logic TIL and
the state updating rule for HMS machines.
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Notation Given an HMS machine H with state set S, the "marking" of 1I at time t is a
mapping Mt : S -f {F, T} that defines the set of marked or true states of H. I
Definition 1 Given a marking Mt of an HMS machine at time t and a forrnula Q,, we

denote the satisfiability of 4, in Ali by Mj k V). The temporal interval logic 7IL ts then
obtained by extending propositional logic with the following four operators:

0(t') At relative time t'

M ý= O(t')¢ 4, *M+t, P 4P
[tl, t21 Always between t± and t2

A M = Itt, t2]0 ** Vt' t : 5 t' < t2 implies MAt [- O(t'), 3
<tl, t2> Sometime between tj and t2

M ý=<t1 , t2> ) 4* 3t' such that tj < t' <_ t2 A Mt [ O(t')V
<tl, t2>! Sometime-change between tj and t2 3

MA I=<t1, t2>! €* 3et' such that
((t1 - 1) < ti < t2) A (Mt [= O(t')-'V4) A (M, k<t' + 1, t2>,).I

Definition 2 For each state s in an HMS machine, let Fn(s)(Fou(s)) be the set of transi-
tions into (out of) s. Then, the marking of s at the next moment (t = 1), given the marking
at the current moment (t = 0), is defined as follows:

O(1)s ,• (s A (AuEr°u,(s) O(1)-,u)) v (V Mr,.E.) O(1)v), 3
where for a function 4,, A x O(x) = T if X = { } and VZxI (V) = F if X { }.

Intuitively, a state s is true at time t = 1 if and only if (1) s is true at time t = 0 and no 3
transitions fire out of it at t = 1, and/or (2) some transition fires into s at time t = 1.

I
3 Transition of a Specification to Design

In this section, we present an example of an HMS machine specification of a simple railroad I
operation and we provide an outline of a partial transition of some of its components to a

design. The process requires two steps. In the first step, two sections of this specific HMS
machine are mapped to a location space consisting of two components: (1) a software process
that monitors a clock and sends a green light signal for a new train to start on the track, and
(2) a mechanical device that operates a gate mechanism. In the second step, the section of

the HMS machine specification for each location is refined to reflect design considerations.
We note that the two steps can be reversed, i.e., it is possible to perform the refinement first
and then to define the mapping to the location space. In fact, more choices for design are I
possible in the latter case.

Figure 1 presents our graphic notation for an HMS machine representing the operation]I
of a simple railroad. In our notation, boxes represent states, dark arrows denote transitions. ,
with an asterisk indicating that the transition is nondeterministic, thin arrows represent

I
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di Train on Train In

time ago.ml•• m

Track Crossing

Gate
Down

Figure 1: HMS Machine Specification of a Simple Railroad Operation

controls, and temporal operators appear next to the symbol (hd. VLSI notation is used to
form logical combinations of control predicates and a TIL predicate of the form < t, t > is
abbrev ated asotw nd a predicate of the form <t, t>! is abbreviated as t!. Also, a short thick
line at the beginning (end) of a transition denotes the special state that is as ingtrue (false).
Thus, the nondeterministic transition into th b the "Rain on Track" may fire if that state
has been false continuously for the last 30 units of time. Also, the transition into the state
"mcGate Down" will fire if the state "Train on Track" was false and became true 10 units of
time ago.

In Figure 1, a partial allocation of the states, transitions and controls of the HMS machine
into the two locations Lr and L2 is made, as indicated by the shaded raions. In Figure 2,
LI and L2 are refined to reflect the transition of two parts of the specificaeon to a simplified
design. As mentioned earlier, we can assume, for example, that Lm is to be implemented in
terms of a software process that monitors a clocks and sends a signal to a greeen light to allow
a new train o thhe track 30 time units after the previous train departs. As in Figure 1, the
actual arrival is left nondeterministic as indicated by the asterisk next to the transition into

the stae a"Start Train." The location L2 may correspond to a mechanical device that starts a
mechanism for lowering the gate 2 time units after the state "Train on TRack" becomes true.

The process of lowering the gate takes 7 time units. Fivgue units after the train passes
the crossing, the gate is raised automatically so that it is no longer in the "Gate Down"
position.

It should be noted that in Figures I and 2 we employ a discrete-time version of HMS
machines, in which transitions fire at discrete integer-valued moments of time. This is
consistent with the usual finite-state machine modeling approach to representing behavior.
Under this assumption, it is easy to prove that time delays in location L, and L2 of Figure
I are maintained accuratedly in the respective locations in Figure 2. Thus, the time delay
budget of 10 time units for the gate to be down in Figure 1 is allocated to two separate

delays plus an extra tranisition in Figure 2. With the use of continuous-time HIMS machines
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Figure 2: Partial Design of Railroad Operation

[Ga9lb], the extra time for the second transition would not be required, resulting in a simpler I
demonstration of faithfulness of the refinement with the original specification. In both the
discrete and continuous cases, the TIL language can be used to formally state the firing
conditions for transitions in a specification and its refinement. Safety properties can also be I
independently verified for a design that is derived from a specification.

Transformations on specifications that maintain temporal properties, such as those in
JFG89, G1921, offer another promising approach to transitionsing a specification to design
in a way that guarantees to maintain requirements satisfied by the specification. However,
as noted by a number of writers, this is often not necessary. For example, one of the trans--
formations in JFG89] only partially preserves behavior. In a possible application of such
a transformation to our railroad example, one could investigate the design of the software

under the assumption that the train starts immediately after the green light is turned on.
Understanding of the environment is often necessary to determine the usability of transfor-
mations that do not strictly maintain behavior.

We have considered in this example a single-step refinement of a specification that main- I
tains logical and temporal properties. The allocation of the refined specification to a set
of locations can be considered as one step in the evolutionary process of design. Normally,
a number of repeated refinement are necessary to reach a final design. To consider com- I
plex data flows, an extended version of HMS machines IC1901 can be employed that uses
non-boolean states and replaces TIL with its first-order counterpart. For many commonly-

occurring systems, however, the boolean version presented in this paper is quite adequate.

I
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For example, in the present example, the boolean case is sufficient in identifying information
flcw into a location as the set of control arrows that enter its boundaries.

4 Summary and Conclusions

In this paper, we presented a brief overview of the hierarchical multi-state (HMS) machine
specification methodology and demonstrated through an example the process of refining a
specification to a design. The important advantages of our approach are: (1) hardware, soft-
ware, communication elements and human interactions can be treated in a uniform manner,
(2) formal verification can be used to assure the correctness of the original specification,
(3) preservation of logical and temporal properties during the transition to design can be
demonstrated by either a formal verification process or by limiting refinements to transfor-
mation that preserve or partially preserve behavioral properties, and (4) executability of the
visually-expressed HMS machine formalism provides further analysis capabilities in either
simulating behavior in the forward direction or detecting causes of errors by simulation in the
backward direction. A branching backward simulation is, in fact, the basis of the model-based
theorem proving of [Ga9lb, G1911.
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the resource requirements are known, the operating system 1iiust be designed vo that it cali proved,-
guarantees to applications that the needed resources will indeed be available U

Much of the current research in real-time systems focuseb on these two proble•us, with language
and applications designers working on building systems with fixed resource requirements, and operating
systems designers working on developing scheduling algorithms for allocating resources so that tasks I
with known resource requirements can ment deadlines. With this approach, the burden of ensuring
timing and resource correctness at run-time is placed entirely on the OS. This is a reasonable approach
if the application has a fixed set of functions to perform, operates in a stable environment, and is I
primarily repetitive in nature, such as signal proceshing applications. However, it does not work bo well
if the resource requirements of tasks may vary at run-time, or if resource availability can change during
execution due to the occurrence of faults, or due to preemption of te_-sourcm by higher priority tasks 3

On the other hand, some systems use models where the responsibility for meeting deadlines is placed
on the application, with the OS providing some support capabilities which the application can utilize
This approach can deal with resource scarcity situations by providing appropriate exception handlers in
the application. The difficulty is that this burdens the application programmer heavily. Moreover, this
approach is feasible only if there are a relatively small number of situations which the application must
deal with, otherwise providing handlers for all combinations of possible situations becornes intractable,

However, a large, complex, and highly dynamic application such as an aircraft control system may
have a variety of timing and resource requirements to meet, and these may change constantly. The
resources available to the OS may also change as the operating environment changes. To meet this chal-
lenge of handling a wide variety of complex dynamic situations involving resources, it is necessary that U
the OS and the application should work together and ensure that the application resource requirements

match the actual current availability of computational resources. Our design of the R-Shell run-time sup-
port system is aimed at an integrating the design of applications with OS capabilities, and at facilitating
run-time co-operation between application and OS.

The R-Shell system is based on the concept of scheduling agents, which interface between the ap-
plication and the OS, and perform resource management functions. Scheduling agents are part of the I
run-time environment for a particular application, and arc generated at compile-time to provide exactly
that functionality which is needed by the application. They reside on top of an object-oriented OS.
They can be designed to provide any resource management functionality appropriate to the application.
such as obtaining guarantees from the OS that a method invocation in an object-oriented real-time
application will have enough resources to meet its deadline.

In this document, we describe the motivation for the R-Shell approach, and our design of the R-Shell
system. The rest of this section describes the complexity of the problem of building distributed fault-
tolerant real-time systems. Section 2 presents a characterization of alternative approaches which may be
employed to address this problem, and where several of the existing systems fit into this characterization.
In section 3, we present our design of the R-Shell system. Section 4 summarizes the discussion.

Problem description: The complexity of large real-time systems 3
A large real-time system typically consists of many tasks, each with their own individual requirements-
Moreover, in applications such as aircraft control, these tasks may have substantial inherent unpre-
dictability. There may be several application characteristics which complicate the process of resource I
allocation in the system:

3
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e Deadlines: The resource allocation process must ensure that deadlines of critical operations are
met. Failure to meet these deadlines may have catastrophic consequences for the system,

* Periodic tasks: The application may include some functions such as data acquisition and moni-
toring which must be performed repeatedly.

* Aperiodic tasks: User queries as well as unexpected external events can both give rise to non-
periodic requests. The OS must service these requests without jeopardizing the deadlines of critical
tasks.

a Precedence and grouping constraints: There may be relationships among different tasks
constituting an application: they may share data, or one may process data produced by another. In
addition to these synchronization and precedence requirements, there may be grouping constraints
among several tasks which cooperate to perform a function, so that their result is useful only if all
of them complete.

* Resource usage: Some tasks may require resources with specific characteristics, or may need
varying amounts of resources in different executions. For example, a particular task may need a
32-bit processoi with a floating point accelerator in order to produce precise and timely results.
The processing and network bandwidth of a radar system may depend on the number of targets
being tracked currently.

SSupport for application-specific techniques: The application may use particular techniques
such as recovery blocks [9], and imprecise computation [5] to handle specific situations involving
scarcity of resources. The system designers need to ensure that the OS resource management
policies are compatible with the various application-specific techniques.

In addition to this complex application model, the computational environment may itself have several
characteristics which make resource management still more difficult:

* Faults: The requirements for fault-tolerance and degraded modes of operation imply that resource
availability in the system may vary in different situations, and applications should be able to adapt
their behavior to match the changing resource availability.

* Resource limitations: Even under normal operation, the limited availability of resources may
create a problem if application resource needs vary. For example, the network may become a
bottleneck if the radar system needs to track many different targets.

* Dynamics: The resource charactersitics may vary as application characteristics vary. For example,
network behavior changes under different levels and different types of network load, making it
difficult to achieve predictability.

* Emergencies: When emergency situations occur, resource allocation must be modified to devote
maximum resources to emergency handling. This requires that the scheduling of all resources,
including networks, should be based on preemptive priority-driven schemes.

We can divide this bewildering variety of requirements into four categories of problems which the
resource management strategy must address:

1. Scheduling and resource allocation to meet deadlines, and to handle precedence and grouping
constraints for periodic and aperiodic tasks.

I
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2. Obtaining and using semantic information about applications, including variations in resource
requirements, and needs for specific resources. I

3. Handling of faults and emergencies.

4. Providing support for application-specific techniques.

OS design for fault-tolerant, distributed, real-time systems is an extremely complicated problem,
since it must cater to a variety of application needs in a highly dynamic computational environment.
It is our belief that it is difficult to handle this complexity either purely in the OS or purely in the
application that motivates our approach of cooperation between application and OS in addressing these
issues. 1
2 Classification of current approaches 3
Conventionally, issues relating to resource management are handled entirely in the OS. It is considered

desirable to free the application from the burden of worrying about computational resources. However,
this is typically not possible in a dynamic real-time system. Only the application may have knowledge of I
variations in resource requirements. The handling of faults and overload situations may be application-

specific. Application semantic information may be needed for the scheduler to ensure that deadlines
will be met. For all these reasons, the responsibility for resource management, and by extension the 3
handling of dynamic behavior, is usually shared between the application and the OS. We characterize the
approaches to addressing the problem based on the degree to which each of them share this responsibility.

There is a spectrum of possible approaches, ranging from handling the problem entirely in the 3
OS, to handling it entirely at the application level. The variation in the division of responsibility is
really a continuous one, so that we cannot provide a strict enumeration of the different possibilities.
Nevertheless, we arrive at a broad classification of the solutions into four approaches, which correspond
to basic differences in design philosophy. Figure 1 illustrates this classification pictorially.

The following is our characterization of the solution approaches:

" Application-controlled: At one extreme is the situation where the OS does not provide any I
special support whatsoever. The application must incorporate all the techniques needed to handle
dynamic situations. This is the default in current practice. 3

" OS-controlled: The other extreme is the situation where the OS takes all the responsibility for
performing scheduling to ensure that deadlines are met, without any input from the application.
While this is convenient from the viewpoint of the application designer, it is inherently limited in
terms of the issues which it can address. In particular, it cannot deal well with unpredictable vari- I
ations in application resource needs, and does not support application-specific techniques (which
might produce better results). II

" OS-controlled using application semantics: This approach puts the bulk of the responsibility
on the OS, with the application supplying it with semantic information, such as dynamic deadlines,
resource requirements, criticality and value function information. This approach is more powerful
than the previous one, and still does not place a heavy burden on the application. Like the previous
approach, it requires a sophisticated OS design.

3
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A: Application-conltrolled C. OS-controlled using
application semanticsI B: Application-controlled

with OS support D: OS-controlled

I
A B C D

00
More Application Responsibility

More OS Responsibility

Figure 1. Spectrum Of Approaches To Handling Dynamic Behavior

I . Application-controlled with OS support: This approach lets the application do the work
of dealing with dynamic behavior, but the OS contains features and mechanisms with which the
application can obtain status information and modify system behavior. For example, the OS may
provide information about resource availability and current resource usage by other applications,
and allow applications to customize the scheduling policies and modify resource allocations. With
this approach, applications have considerable flexibility in terms of implementing different tech-
niques to deal with situations.

In [8], we discuss several current systems, including ARTS [13], CHAOS [2], Concord [5, 7), GARTEN
[10, 6], MARUTI [4] and Spring [12, 14], and where they fit into this characterization.

I 3 The R-Shell system

We propose a system called R-Shell that provides run-time support for large, complex, fault-tolerant
distributed real-time applications. R-Shell consists of an object-oriented OS, object-oriented applica-
tions, and scheduling agents which interface between the applications and the OS. The design of R-Shell
is based on the approach of co-operative resource management. In terms of the classification pre-
sented in Figure 1, co-operative resource management does not correspond to a particular point on the
spectrum. Instead, it spans the entire spectrum, and individual applications designers can define the
respective roles of OS and applications based on the needs and characteristics of the application.

In this approach, the OS and the application share the responsibility for resource management, based
on some systematic design methodology. It must be emphasized that this approach is not the same as
an equal division of responsibility; there is an associated design methodology using which application
designers set out the roles of the application and the OS, and decide the modes in which they interact

I
I
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and co-operate to achieve the overall goal. The power, flexibility and utility of this approach depend onf
the methodology itself. A good methodology can lead to a well-integrated design where the application
and the OS dovetail perfectly, taking responsibility for just those aspects of the overall behavior and
functionality which they are best-equipped to handle. I

In R-Shell, the scheduling agents which interface between the application and OS are constructed to
fit the needs of particular applications. The OS capabilities they utilize and the functionality which they
provide to the application can both be determined by applications designers based on the implementation
platform and application requirements. However, the scheduling agents are not a part of the application.
They are part of the run-time support system provided by the software development environment.

3.1 The R-Shell framework I
The R-Shell system is based on an open system concept, that each application should be able to obtain,
and pay the performance penalty for, exactly those elements of functionality which it requires. The I
problem with incorporating many features in the OS is that the OS becomes very complex, and also quite
slow, which is unacceptable in some real-time applications. On the other hand, if the application must
incorporate many different resource management techniques, there is a heavy burden on the applications
programmer, and also there may be a performance loss since resource management is not tailored to
the particular system configuration. Run-time environments (RTEs), on the other hand, are developed
for particular implementation platforms, and moreover, compilers ensure that RTEs contain just those
elements of functionality which a particular application needs. Therefore, we believe that RTEs are the I
ideal components for incorporating sophisticated resource management features which may be needed

only by some applications. Moreover, since RTEs are generated in the context of a particular application,
they can utilize application semantics to implement application-specific features. Hence the key feature
of R-Shell is the use of scheduling agents which are part of the run-time support environment, and
interface between the application and the OS.

It should be noted that including resource management functions in the RTE is not in itself a novel i
idea. Conventional RTEs do manage memory with heaps and stacks. The Ada RTE does perform
scheduling functions for tasks within an Ada application. The novelty of our approach is in the use
of scheduling agents in the RTE to take advantage of both semantic and configuration information,
in giving application programmers control over the functionality provided by the agents, and in the
extensive capabilities and responsibility which we propose for scheduling agents.

Figure 2 shows the structure of the R-Shell system. The RTE for each application includes a schedul-
ing agent which performs resource management functions for that application. Each type of physical
resource has a resource manager which schedules use of resources of that type. The scheduling agent
interacts with the resource managers for each individual resource to obtain all the resources needed by
an application. Resource managers interact with each other to coordinate the allocation of resources to I
different applications.

Scheduling agents can perform a variety of different resource management functions, depending on
the needs of the application, and the facilities provided by the underlying OS. Throughout the rest of I
this document, we illustrate the use of scheduling agents by describing some typical functions needed
in a real-time system. In particular, real-time systems need to express resource needs, obtain guarantees
about resource allocation, and handle exception situations where resources suddenly become unavail-
able due to faults or preemptions. We will discuss the concepts of R-Shell by describing an OS which
provides guarantee and exception notification features, and an application which needs to express its

i
I

332 3



App:ical-on Atsn. Time Ope'ablr tmpk ¶."ne ntailon
Poarm , Support Envtionrment , •t$Lem plaorm

aScheIng Manager

Applicationg

Agent Resource

resouce reuireentsto otain uaraneed esoure Raloainurcte adereoreeceto iu

Manager

Scheduling nesour

ofrsoures, Andpanlesituations Sucheadfultsuiggnraiehiusnhcgr ndpneto

Agent

Figure 2: The R-Shell System

resource requirements, to obtain guaranteed resource allocation, and to handle resource exception situ-
ations. However, it should be noted that scheduling agents can be designed to implement any resource
management functionality which is appropriate to the needs of a particular application.

The r -Shell approach riepesents an integration of the functionalnty of real-time applications and of
the OS, with respect to resource management. This integration is accomplished by the use of scheduling

agemnts conially, the OS is a configuration-dependent entity, which coordinates the allocation
of resources, and handles situations such as faults using general techniques which are independent of
application semantics but may be dependent on resource characteristics, such as process migration,
message rerouting, and replication of remote procedure calls. The application handles resource-related
situations using techniques which may exploit application semantics, but are often independent of the
system configuration, such as fault recovery procedures, handling memory and file allocation errors, and

version selection for imprecise computation. In R-Shell, scheduling agents can utilize either application
semantics or configuration information or both, and implement any of these features as necessary. Thus,
instead of locking in the roles of tihe OS and the application, scheduling agents allow application designers
to select the kind of behavior they want.

The salient features of the R-Shell approach are:

•Flexible scheduling strategy: The scheduling policies of the system can be modified easily by
changing the scheduling agent functionality. For example, different programnming languages can

provide different scheduling agents to reflect their design philosophy. It is also easier to utilize
application semantics to make more intelligent scheduling decisions.
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" Use of object-oriented model: The R-Shell approach is truly object-oriented, in that each
application object is autonomous in its scheduling decisions. Most "object-oriented" OS designs I
include a centralized scheduler, which makes all scheduling decisions for all objects. The behavior

and correctness of every application program depends on the scheduling policies implemented in
this central scheduler, and on the resource requests made by other applications to the central
scheduler. This is in violation of the object-oriented philosophy, according to which each object
should be an independent self-contained entity, which can be designed, implemented and verified
independently. In R-Shell, since each application incorporates its own scheduling agent, which
handles all situations relating to resource management, the application is more insulated from I
external scheduling decisions, and from other applications. This is a more object-oriented model

fo system design, and as we discuss later, provides portability and reusability even for real-time
application software. Also, the object-oriented nature of the OS and the applications is exploited
in the design of the interfaces between the different system components, and in the modeling of
resources in R-Shell.

" Fully distributed scheduling: Since the scheduler in many object-oriented operating systems 3
is centralized, it constitutes a performance bottleneck, as well as a single point of failure. The
dependence of real-time behavior on system and network load also makes it difficult to realize
many of the advantages of distributed systems, such as process migration and reconfiguration for
fault-tolerance. In R-Shell, the scheduling is fully distributed, since each resource type has its
own resource manager, and every application its own scheduling agent. There is no single point
of failure. Also, since the scheduling agent enables applications to adapt to different situations of
resource availability, it is possible to use techniques such as process migration and reconfiguration,
and perhaps even to port the application to a different platform, and still obtain correct real-time
behavior.

In the rest of this section, we describe some of the features of each component of the R-Shell system, 3
and how they are used to build systems. However, before we launch into a description of the components,
we first present our object-oriented hierarchical model of resources, which provides the conceptual base
on which resource management in R-Shell is built. This model is used not only to represent the actual I
physical resources available, but also to express resource requirements and resource characteristics.

3.2 Resource modelingi

One of the innovative features of R-Shell is that it models resources using an object-oriented resource
hierarchy. This hierarchy concept allows applications to express their resource requirements more pre-
cisely. Moreover, it facilitates the innovative technique of resource subs itaion (described below) which
replaces an unavailable resource with some other resource whose properties most closely match the
desired properties. This technique is used in R-Shell for handling resource scarcity due to faults or I
preemptions.

For each type of computational resource, R-Shell describes its characteristics with an object-oriented
class description. The methods of this class description correspond to the functionality provided by the i
resource, and the state variables capture the properties. Thus, a processor resource may have a class
description which includes methods such as execute-instruction, service-interrupt etc. The state
variables may include speed and number-of-interrupt-levels. Resource objects are instantiated from I
this class description to represent the actual physical resources in the system.

I
I
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Resource descriptions in R-Shell are organized into a resource hierarchy. Figure 3 shown an example
of a partial object-oriented class hierarchy. The various resource class descriptions in the system form
an object-oriented hierarchy. As we go down the hierarchy, the resource subclasses model the resource
to a greater level of detail, and describe some specific subset of the resources. Thus, Network may have
a subclass Token-ring, with additional methods such as request-token and additional properties such
as token-round-trip-time. The purpose of the hierarchy is to capture the properties of computational
resources to different levels of detail, and to distinguish between generic and specific resource types.
With this, applications can express their needs for specific types of resources, by requesting resources
belonging to a particular resource subclass.

The resource hierarchy is known to all components of R-Shell. The OS uses the resource hierarchy to
represent physical resources, and keep track of resource allocation. Based on the resource hierarchy, the
OS also knows which particular physical resource can satisfy the request for a generic resource class such
as Primary-memory. Applications use the resource hierarchy to express their resource requirements
and the assumptions they make about resource characteristics. Scheduling agents use the resource
hierarchy to direct resource requests to the appropriate resource managers. The resource hierarchy also
facilitates the innovative technique of resource substitution, described next.

Resource substitution

In R-Shell, applications modules (methods) express their requirements of all computational resources
(actually, most of the resource reqclirements are derived using a schedulability analyzer, and incorporated
into the scheduling agent, as described later). Moreover, using the resource hierarchy, they express the
set of desired properties and characteristics, and the assumptions they make about the resource. Thus,
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one application may simply need a processor which can service interrupts, whereas another may depend
on the interrupt being serviced within, say, I microsecond. Another application may only work correctly
if the processor includes a floating point accelerator. Since real-time systems typically depend on specific
resource characteristics, this mechanism provides critical semantic information to the scheduling agent.

Using this semantic information, the agent can perform more intelligent resource allocation. If I
a processor fails, and the application must be relocated to a different processor, tht agent has the
information to decide which of the other processors in the system will be acceptable, particularly since the
application expresses all its resource needs, such as the computational servers it requires, the assumptions
it makes about communications delay to other nodes, the communication bandwidth needed etc. The
agent can therefore deal with resource unavailability by substituting the scarce or unavailable resource
with some other resource which is available.

One form of resource substitution occurs when a resource is replaced with another similar or equiva-
lent resource. If an exact equivalent resource (which has all the properties desired by the application) is
not available, the scheduling agent may use the information contained in the resource hierarchy to iden-
tify another resource which matches most of the properties and may still be acceptable. For example, it
may provide a processor with fewer registers or without a floating point accelerator. Since all the desired
properties are not met, the application may produce an approximate, imprecise result. Thus this form
of resource substitution is similar to imprecise computation; it has the same effect of trading off result I
quality to deal with resource unavailability.

Another form of resource substitution occurs when the needs of one type of resource are reduced by
providing more of another type of resource. Computations can often make tradeoffs between time and I
memory, between time and communication bandwidth, etc. Some of these tradeoffs can be built into
the scheduling agent, allowing it to choose from alternative versions of library routines, such as different
sorting algorithms with different resource usage. For example, the agent can increase communication
bandwidth allocation to reduce communication delay, or insert message compression and decompression
algorithms to reduce communications bandwidth usage at the expense of longer message delays.

R-Shell scheduling agents can support both forms of resource substitution. Resource substitution
can be used for handling faults and preemptions, both at the application and the OS level. I

3.3 Resource managers 3
The OS in R-Shell consists of a collection of resource manager objects. Each type of physical resource
in the system has an OS resource manager associated with it, which schedules resources of that type.
Resource managers maintain a list of resource objects, corresponding to actual resources available.
They receive requests from applications for resources, and allocate resource objects to them. When
an applications module makes requests for several different types of resources, the scheduling agent for
the application sends requests to the resource managers for each type of resource. Resource managers I
interact with each other to coordinate scheduling of different applications, to avoid deadlock. When
a resource manager is able to satisfy a resource request, it provides the application with a guarantee
that the needed resources will be provided. R-Shell supports multiple levels of guarantees, including U
an absolute guarantee (subject to faults), a guarantee subject to preemptions by later higher-priority
jobs, and a best-effort guarantee (not quite the same as no guarantee, because of exception notification,
described below). Applications can select the level of guarantee they require; they can also request a
lower-level guarantee if a higher-level guarantee is refused.

Upon request, resource managers can provide information about resource availability, and also accept
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messages from applications specifying information about resource usage, such as preferences for certain
resources. Resource managers send exception notification messages to applications if a guarantee cannot
be satisfied, due to faults, or preemption of resources by higher priority tasks (in the case of the best-
effort guarantee). Under these circumstances, if the resource manager cannot maintain the guarantee, it
sends a message to the application (i.e. an upcall) notifying it of the resource exception. These messages
enable applications to perform exception handling.

3.4 Support for building applications

R-Shell is designed to facilitate building object-oriented real-time applications. The support provided
includes schedulability analysis tools to determine resource requirements, scheduling agents to perform
resource management, and language primitives for expressing resource needs, for requesting guarantees,
for performing exception handling, and for defining multiple versions of methods if imprecise computation
techniques are used. Because of its widespread popularity, and the easy availability of a public domain
compiler (GNU C++) which can be modified, we have chosen to add the primitives onto C++, though
they can as easily be added to any other object-oriented language. The support provided by R-Shell for
building real-time applications includes:

" Expression of resource requirements: A major emphasis in R-Shell is on complete expression
of resource requirements. Current programming languages use ad hoc primitives to express resource
needs, such as malloc for memory, opening files to read data, opening sockets to get access to the
network etc. Also, in current systems, programs do not describe their assumptions about resources,
though they do make assumptions about network speed, network bandwidth, processor speed etc.
This is a major reason why programs, particularly real-time and fault-tolerant programs, are not
portable to configurations other than the one they were written for.

Using the object-oriented paradigm, R-Shell allows the expression of all resource needs as requests
for particular kinds of resource objects. The R-Shell programming language supports the concepts
of resource objects described earlier, and the language definition includes descriptions of a standard
set of resource objects, with parameters which represent their characteristics. Applications send
requests to the OS, asking for allocation of instances of particular kinds of resource objects. Then
they make calls (send messages) to the resource objects to perform operations on them, such as
sending a message or reading some input from a file.

" Deriving resource requirements from schedulability analysis: The language incorporates
a schedulability analyzer which uses a combination of analytical techniques and test runs to derive
the resource requirements of programs, and automatically incorporate requests for resources when
they are not explicitly coded in by the user. This feature relieves the application programmer of
the burden of coding in explicit requests for all resources, and particularly of having to estimate
execution times. The design of the analyzer is based our previous design of the GARTAAN schedu-
lability analyzer [10]. If the method requires any special resources (such as sensors and effectors)
which cannot be inferred by the analyzer, or if it makes specific assumptions about resource char-
acteristics, then the applications programmer must insert requests for the corresponding resource
class. The information derived from the schedulability analyzer is incorporated into the scheduling
agent, as described in section 3.6.

" Requests for guarantees: The programming language also supports the notion of guarantees
for method invocations. It provides the primitive guarantee which can be applied to a method,
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which requests the OS (and the scheduling agent) to guarantee that resources will be available
to guarantee the method. The guarantee primitive returns a value which indicates the level of I
guarantee provided to the method. If the guarantee is refused, the application can determine this

from the return value, and take appropriate exception handling action.

" Exception handling: Application objects can also include methods which process exception noti-
fication messages from the operating system. If a particular type of resource becomes unavailable,
the OS sends the application a message notifying it of the exception. Applications can handle
these exceptions by defining appropriate exception handler methods. These exception handlers I
facilitate the incorporation of various fault-tolerance schemes in application objects, so that each
object can encapsulate its own resource exception handling. This is in contrast to current systems,
where fault detection must be done explicitly by the application by setting up and catching signals,
or other similar mechanisms, and the language may provide little or no support for performing
fault-tolerance.

" Version selection for imprecise computation: If the application chooses to use the techniques
of imprecise computation for handling resource scarcity and faults, then the programming language
provides support for defining multiple versions, and for performing version selection at run-time.
Application objects may define several different implementations of any method, using the tech-
niques of imprecise computation. These different versions differ in their resource requirements,
and produce different qualities of result. At run-time, that version is selected for execution whose
result quality is the best, from among those whose resource requirements can be guaranteed. This
version selection can be performed by the scheduling agent for the application. I

It should be noted that the concept of scheduling agents is language-independent, and that scheduling
agents can be provided even for languages which do not provide the special support facilities described
here. These particular facilities are provided in R-Shell because we believe they are very useful for
building real-time applications, however other languages and OS designs may prefer to provide different
functionality in scheduling agents, and different language and run-time support facilities. 3
3.5 Run-time support: Scheduling agents

Every application has a scheduling agent associated with it at run-time. This scheduling agent is part of I
the run-time support environment for the application, and is an enhancement of the conventional concept
of the RTE Whereas conventional RTEs provide functions such as object management and resolution
of method invocations, the scheduling agent can generalize this to include scheduling functions such as
resource management and version selection.

The application dictates the functionality to be provided by the scheduling agent. For example, if
the application uses the guaraniee primitive, then the scheduling agent will perform resource guarantee
functions. Similarly, if the application defines several different versions of methods, then the scheduling
agent will include version selection functionality. Applications designers can also specify that certain
functionality should or should not be included in the scheduling agent, e.g. whether or not the scheduling I
agent should perform resource substitution.

The functionality provided by scheduling agents will also depend on the programming language. For
example, a scheduling agent for Ada would include support for those PRAGMAs which are implemented I
on the particular system. The implementation of the scheduling agent would depend on the capabilities

I
I
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provided by the underlying OS. Thus, resourc( substitution functionality can only be provided if the OS
supports the resource model.

Figure 4 illustrates the operation of a typical scheduling agent for a real-time application which re-
quires guarantees, and uses imprecise computation. The application expresses resource requirements for
each version of each method. When the application requests that a method invocation be guaranteed,
the scheduling agent is activated. The agent interacts with the OS resource managers to determine
whether all the resources needed by the application are available. Based on this information, it selects a
version of the method to execute, and requests each resource manager involved to guarantee its resource
requirements. By determining resource availability in advance, the agent performs the coordination func-
tion of avoiding situations where some resources are guaranteed, but others are refused. If a guarantee
is provided, but is subsequently violated (due to faults or preemptions), then the agent itself attempts
to handle the exception situation by using resource substitution or selecting an alternative version to
execute. In the event that it is unsuccessful, or if guarantees were refused in the first place and no al-
ternative version is available, the agent notifies the application and transfers control to the appropriate
exception handler. If the application does not provide exception handlers, scheduling agents themselves
provide default exception handlers (perhaps simply print an error message and quit).

Thus scheduling agents can provide resource management functionality for the application, without
adding unnecessary overhead to those applications which do not require the functionality. It may be
argued that scheduling agents unnecessarily duplicate in a higher layer some functions which can be
provided in the OS itself, and therefore add processing and memory overhead. However, this possible
disadvantage is more than offset by the elimination of the unused functionality which is inevitable when
using a sophisticated OS, and by the use of application semantic information. For example, if the OS
scheduler supported imprecise computation, and were to perform version selection, it may spend time
in sorting the various versions in order of decreasing resource requirements and increasing result quality,
so that it may first try to guarantee the better versions, and if they fail, then try poorer versions.
On the other hand, the scheduling agent can have the version order hard-coded into itself, and thus
avoid the sorting step altogether. We can also avoid replication of the same scheduling agent code in
different applications by making scheduling agent code re-entrant, and sharing the code among different
applications.

3.6 Construction of scheduling agents

Scheduling agents are generated during compilation and in the post-compilation phase. The following
information is used in the generation of scheduling agents:

"* Resource requirements information expressed in the application.

"• Resource requirements derived from schedulability analysis.

"* Application semantic information expressed using the language constructs, such as: multiple ver-
sions of methods, guarantee primitives, PRAGMAs.

"* System configuration information, as obtained from the OS at agent generation time.

"* Library routines which implement special resource management techniques, such as various fault-
tolerance techniques, version selection and resource substitution.

"* Exception handlers defined in the application.
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SAn Extended Event Descriptor for Real-Time Systems

1 11 June, 1992

CHRISTOPHER BIOW AND DIETER ROMBACH
I University of Maryland

Abstractl-Event based state transitions are central to Under the direction of D. Parnas, the Naval
some techniques for specification of real time systems. Research Laboratory's Software Cost Reduction
As a part of the Software Cost Reduction (SCR) project (SCR) project provided an important contribution
at the Naval Research Laboratory, an event descriptor to formal requirements specification of real-time
notation was defined in which events are described in software by producing a formal specification
terms of changes to boolean predicates. Follow-on
research produced other models and definitions of the method which was validated by application to a
SCR event descriptor. However, all of these definitions large software system: the already existing A-7I have limitations in terms of their ability to describe aircraft Operational Flight Program. That
certain useful classes of events. We therefore establish specification, in its final form, ran to approxi-
a rationale for evaluating event descriptors in terms of mately 500 pages [NRL 881. As a part of that
generality, implementability, and verifiability. To fulfill specification method, SCR developed a notation to
these requirements, we propose an extended event describe events, using an extension of first order
descriptor which allows expression of a larger class of
events. The new descriptor has the added advantage of logic [IENI 801. In this notation, an atomic event
displaying related functional and timing specifications is described by the notation "@T(condition)," where
together, which allows easier understanding of the condition is a boolean predicate. The event
meaning of an event. We explore the meaning of the described by the At-True expression is considered
event descriptor, both in terms of a formal definition to occur at any instant in time when the predicate
and the code which is required to implement the condition transitions from false to true. "@F" indi-specification. cates the converse. The notation was further

1. Introduction extended to incorporate a guarding condition, in
the form "@T(condition)) WHILE (condition2)".

I n This event occurs at the instant when condition)

I software specification documents for real time transitions from false to true, given that
systems, functions to be incorporated in the condition2 is true at the same time.
software may be specified such that their output
values change in response to external events. Such The description of the @T notation in the previousI functions are most easily specified in terms of state paragraph is strictly intuitive. It uses the words
transitions, where the transitions are triggered by "instant" and "at the same time." However, since
events. An example would be a function which computer software does not deal in infinitesimal
illuminates a warning light whenever a fluid level instants or simultaneity, no program can monitor
exceeds a certain amount and which then both event and condition at the same time. If the
extinguishes the light if an acknowledgment notation is to specify the behavior of computerI button is depressed by the operator. This paper software, then its formal definition must be
concerns attempts to produce a notation to define unambiguous and implementable with software,
and describe such events in software and the implementation must be verifiable.
specifications.I 

We propose three main aspects by which an event
descriptor should be evaluated. First, it should be
general enough to cover a class of useful,

This work was supported, in part, by the reasonable events. We will explore certain types of
National Science Foundation, under grant events that require a more expressive descriptor.
CCR-9057874 to the University of Maryland. Second, it must be unambiguous and should allow

implementation in code in a straightforward

I
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manner. Thus, it should not require that unduly Before. Suppose that the occurrence of the event
complex code be written to detect simple events. @T(A) may make the value of B inaccessible. For
Third, the descriptor should enable the verification example, if A is an explosion, and B is a reading of I
of the code that is written to implement it. There ambient temperature from a delicate device

should be a practical means to examine the code to adjacent to the explosive, B may be invalid once A
determine that it does in fact fulfill the specifica- becomes true. In this case, the specification writer
tion. These can be difficult standards to fulfill. As ("specifier") should be able to dictate that, when A
we will demonstrate, event detection in code is transitions from false to true, the WHILE
often a simple matter, perhaps requiring no more condition should use the value of B obtained most
than a single condition statement. Yet where recently before the event @T(A). The same order I
complex definitions of events are required, the would also apply if @T(A) WHEN (B) initiates a
code that implements those events may become process, @F(B) terminates the process, and it is
quite intricate. essential that the process be initiated in cases

where the same external occurrence may cause
In section 2, we address the main topic of this @F(B) shortly after @T(A).
paper, which is the issue of generality, or the
variety of occurrences that can be covered by the After. Suppose B is valid only after @T(A) occurs.
definition of event. Section 3 covers previous work For example, if B were the output of a peak-
that has been published concerning the definition reading pressure meter that measured the
of the @T event descriptor. In Section 4, we intensity of the explosion in the previous example,
motivate the selection of an improved event it would be essential to specify that B be checked
descriptor with a detailed description of the only after the event @T(A). Or, in the second ex-
requirements that the descriptor should fulfill, ample of part the previous paragraph, if there is a
Our proposed descriptor is presented in Section 5 safety constraint which dictates that the process
and then defined and implemented in code in not Le initiated in cases where @T(A) and @F(B)
Section 6. Section 7 covers other factors involved are caused by the same external occurrence, the
with implementation, concerning the nature of in- specifier may wish to dictate that the value of B be I
puts to the program. In Section 8, we evaluate our checked after @T(A).

descriptor and the previous work in terms of the
proposed requirements. Both. Suppose there are two types of events that

may cause @T(A). One type will affect only A; the
other type will make A true and will reverse the

2. Generality in Event Description value of B. If only the first type of event should
trigger the function, then the value of B must be

2.1 Event Sequencing and Timing checked both before and after the value of A.

Since single processor systems can test only a Either. In discussing difficult and complex cases, 5
single external condition at a time, and communi- we must remember that, in most cases, the
cation and resource contention prevent distributed sequencing and timing of event detection will not
systems from comparing external data values at be critical. Using the explosive-temperature
the same time, the definition should imply a example, if the thermometer were placed far 1
specific sequence of tests upon external variables, enough from the explosion not be affected, the
It is this need for a sequence of testing that gives sensing of the explosion and checking of the
rise to the most fundamental ambiguity in the temperature could occur in any sequence. The I
"@T(A) WHILE (B)" notation: should the condition specification might only require that the
be tested before the event, after it, both before timperature value be sampled at a time reason-
and after, or either before or after? In practice, it &nly close to the explosion (i.e. not an hour prior).
is useful to be able to specify any of the four
situations. The following paragraphs provide These examples may also be extended to cover
examples in which each of the four would be cases where indeterrinacy in data-arrival timing
appropriate, dictates that the value of B be examined within a I

certain interval prior to, or after, the occurrence of
@T(A). For example, in the measurement of the g
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explosive's ambient temperature, we may require show brief decreases. In the figure, such an
that B be measured no earlier than one minute oscillation would cause the event @T(Temp > 98.6)
prior to @T(A), but no later than one millisecond to be detected twice.
prior to the event. A good event descriptor should
be able to express any f these situations. Thus, in any of these three cases, an @T expres-

sion might be triggered many times due to an
2.2 Input Behavior oscillating or "bouncing" value. If we are to allow

for system designs that require the above events to
Another consideration is the ability of the only occur only once in each such case, we will
specification to handle ill-behaved input signals. need to extend the descriptor to provide for more
Three examples of such difficult behavior that complete handing of the inputs.
must be addressed are shown in Figure 1. In Case
1, a digital signal is produced by a mechanical 3. Previous work
switch which suffers from "bouncing" as it is
turned on. The signal oscillates for a time, before The SCR project [NRL 881 formally defined the At-
settling into its new state. The event @T(Switch = True notation as follows:
On) would then be detected four times, for a single
movement of the switch. In Case 2, an inherently This notation calls for the evaluation of a
analog signal, temperature, is being measured condition simultaneously with the detec-
with an accuracy (±. 15) worse than the precision of tion of an event. Since this is not possiblethe digital input (k0.05). Thus, the digital signal in any real implementation, we define the

meaning of an expression such as @T(X)
displays random oscillation about its true value WHEN (Y) thus: Let ts be the time at
(indicated by the dotted line). If the event of which @T(X) is detected by the software.
interest were @T(Temp Ž 98.4), this oscillation Then there is a time interval e such that if
could cause the event to be detected multiple times Y is true (false) for all of I ts-&, ts I, or for
during a period when the temperature was all of Its, ts+ 4I, or for all of I ts-C, ts+s I,
unchanging. @T(Temp > 98.7) would be detected then the expression is (is not) considered to
twice, even though the true value was constantly be satisfied. The behavior of the system

increasing. In Case 3, the temperature is being when Y is true for only part of the interval
is not defined; it may or may not behave as

measured at a better level of accuracy (*0.01) than though the expression were satisfied.
the digital precision (+0.05). The signal therefore Which interval we use as the requirement,
tends to oscillate about the true value. A as well as the value of c, is defined in the
temperature of 98.42 results in an oscillating Accuracy chapter [of the SCR specifica-
digital value that spends 60% of the time at 98.40 tions] for each such event.
and 40% at 98.45. Even with a constantly
increasing temperature, the digital input may

On
Case 1 off

98.7--

Case 2 98.6
98.5-4
98.4-
98.3-

98.7--

Cae398.6- -f~"
Cae398.5-- L

9B.4 -__ =/'1== =
98.3-

Figure I
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This definition acknowledges the impossibility of defined as instants in time when a predicate P on
simultaneous evaluation of conditions and events an environmental state function s and time t is
and permits the specifier to choose whether the true [P(s,t)]. A mechanism is provided for
condition should be true before, after, or before expressing the ideal behavior of a system, with

and after, the software detects the event. The acceptable deviations (in time and precision) from
specifier may also choose the interval (epsilon) the ideal. A grammar is provided for the
over which the condition must be true. However, generation of "event class forms," including At-
this definition has several weaknesses. Most True expressions. The following definition of
importantly, it fails to directly relate the behavior "@T(PI) WHEN (P2 )" is given:
of the event variable (X) to the WHEN variable
(Y). Y's behavior is related to the time when the ECO€[(F>0)^V8[(0<5r)-
event is detected by the software, rather than the (-P l(st-8)AP2(st-8)API (s,t)fl)
time when X's value changes. The delay that is I
allowable in detecting the event and the rate at where EC is the Event Class consisting of all times
which the event variable must be checked are not t where the expression evaluates to true. In other
directly specified at all in SCR. Only where the words, P1 must have been false, and P2 true for all
event triggers the performance of a function is a of some interval before P2 became true. Unlike
"Maximum Delay to Completion" given for that SCR, this definition does precisely state which be-
function. The placement of the timing constraints havior of both variables constitutes an event.
in a separate chapter makes it difficult to However, only intervals before the event are I
understand the correct meaning of an event. There supported. In other areas, this definition suffers
is no provision for avoiding spurious events from the same lack of flexibility as the SCR
resulting from bouncing or oscillating inputs. The descriptor.
definition does not make any attempt to deal with
situations where the WHILE condition may be ex- 4. Rationale for Choosing a Definition of @T
pected to change shortly before or after the event.
No provision is made to specify that the condition As mentioned in the introduction, we believe that
be checked both before and after the event, an event descriptor should achieve the objectives

of generality, implementability, and verifiability.
[FAUL 89] provides the specification method of We now explore these criteria in detail. In section I
SCR with both a theoretical basis, in finite state 2, we demonstrated the need to express limitations
automata, and a practical means of translation on events concerning the sequencing of inputs and
into code, using State Transition Event (STE) syn- bouncing or oscillating inputs. We contend that, to
chronization of cooperating sequential processes. fulfill the criterion of generality, an event
This mechanism is intended to supply the descriptor should be able to specify input
temporal rigor required of Hard Real Time sequencing whenever it is desired. There should
embedded systems and to address the often also be provision for useful specifications dealing a
complex issue of process scheduling that can arise with the ill-behaved inputs presented in section

in an SCR specification. This dissertation makes a 2.2.
very important point on the ordering of events.
Whether due to the sequential nature of single Regardless of the intuitive and theoretical
processors, or communication delays in multiple definitions of the At-True notation, if it is to be
processor architectures, there is always an used in the specification of software, then its value
indeterminacy in the detection of events. Only a lies in the possibility of implementation in code. I
partial ordering of events is available in a Thus, the definition of the notation should be ap-
computer. Therefore, his definition of finite state propriate to the goal of producing code, not to any
automata is extended to incorporate a relation abstract sense of neatness or symmetry. It should
describing near-simultaneity. However, the completely describe the circumstances under
specific definition of the @T construction is not which the code must, may, and may not detect an
addressed. event. Furthermore, the code implied by the use of

the notation should not be any more complex than I
[SCHO 901 also contributes to the theoretical un- the problem requires. In most cases, even in hard
derpinning for the SCR method. Event classes are real time systems, only a minimum polling rate for 3
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the inputs needs to he specified, and exact timing the software being specified. At the level of the
and sequencing of the polling is not a specificaLion software being specified, the data item is
issue. Yet, in those instances where the relevant interrupt-driven only if the software itself "hooks"
external variables are not independent, or the in. che interrupt.
puts are ill-behaved, the specifier should be able to
express more exact requirements. Some of the ad- Finally, we propose the goal of verifiability. Once
ditional complexity involved in epsilon intervals the code is written to implement an event
can be justified in the case of hard real time descriptor, it should be possible to verify the
systems, where temporal precision is crucial. correctness of that implementation by identifying
However, the "hard real time" qualifier means only the code elements that fulfill the functional and
that the required functions must alwayf be temporal requirements of the definition. We shall
completed in the specified time. It does not provide an example of such a verification at the
necessarily imply that the drawing of distinctions end of the next section.
between event ordering need be any more or less
precise than in non- hard real time systems. To depict the fulfillment of these criteria, we shall

use the tabular form as shown at the bottom of the
In accordance with this reasoning, we maintain page.
that an event descriptor fulfills the requirement of
implementability if it completely defines the As previously noted, the original SCR descriptor
circumstances when events will be detected. In its definition provides for all of the variable-checking
least complex form, the descriptor should be sequences except "both." The Event Class
implemented by code that performs no more than a definition allows only the "before" sequence.
straightforward check of the input values. It Neither of these definitions provide the means to
should also be practical to implement the detection handle ill-behaved inputs or time delays before
of more complex event descriptions. Further, the and after the event. The original definition is in-
definition must be applicable for cases in which complete, as it does not address when the event
any atomic predicate of the At-True notation is variable itself should be checked. Event Classes
either polled or interrupt driven. In this paper, correct this omission. Both of these definitions
"interrupt driven" refers only to those input data allow simple code to be generated to detect events.
items that result in immediate suspension of code Since they do not address complex ihput behavior
execution and branching to separate code (possibly and polling and interrupts, they are not rated in
pre-empted by higher priority interrupts). Note these areas. Due to its vague description of event
that this definition of "interrupt driven" does not detection, and its relegation of timing constraints
include data items, such as buffered keyboard in- to a separate chapter, the SCR descriptor does not
puts, that cause system-level interrupts without fulfill the verification criterion. It is unclear
changing the order of execution of statements in whether Event Classes would improve upon this.

Original SCR Event Classes
.[NR 81 [SCHO 0

Generality:
Sequencing of WHEN condition-

Before event Y Y
After event Y N
Both N N
Either Y N
Time delays Y N

Input Behavior-
Bouncing N N
Oscillating N N

Implementation:
Complete definition of event N Y
Simple form Y Y
Complex form
Polled_/_Interrupt variables

Verification: N
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5. The Extended Event Descriptor event in which temperature increases past 98.7

degrees, we could ensure that spurious events
5.1 Extensions would not be detected by specifying @T,,1 (jTemp I

98.41=[Temp > 98.71). This event must be detected

The requirement of generality will be provided for any time the temperature stays at or below 98.4
by a series of extensions of the @T notation. By for at least 2 units of time and subsequently I
subscripting the @T and WHEN symbols with increases past 98.7 for at least 1 unit of time. It
numbers and symbols representing temporal must not be triggered until after the temperature
limits, the exact nature of the timing constraints is found to be less than or equal to 98.4 for at least
can be specified. The most elementary form of our one sample. Similarly, the requirement of Case 3 1
new descriptor consists of the basic SCR format may be satisfied by @T,,,(remp • 98.5j=*[Temp >
with a time subscript added to the event: @T,(A) 98.61).
WHEN (B). This form requires that @T(A) be de- I
tected if A remains false for at least x units of time The next extension for the notation allows the
and then remains true for at least x units of time. specification of the sampling order of the WHEN
The value of B may be checked at any time within clause. A subscript after the WHEN clause can
x units of time before or after the time when A contain a relational sign (< or >) and, optionally, a
changes value. Assuming that both values are number representing a time delay. In understand-
polled, any scheme that polls A at intervals of no ing this use of the relational signs, keep in mind
more than x would be acceptable. B may either be that they are used to delineate the sampling order I
polled regularly at intervals of no more than x, or of the clauses. Thus, @T(A)x WHEN<(B) requires
it may be polled immediately after @T(A) is that B be sampled after the event @T(A) has
detected. This allows the programmer maximum occurred. @T.(A) WHEN<y(B) indicates that B I
flexibility in implementing the specification. This should be sampled at least y units of time after
form of the descriptor is equivalent in definition to @T(A). In both cases, B should be sampled no later
the event classes of [SCHO 901, with the epsilon than x units of time after the event. Multiple
interval applying to both sides of the event. WHEN clauses may be used if different sampling I

orders are required for different conditions.

To allow for the "bouncing" of inputs, we provide
our next extension to the notation. The subscript 5.2. Polling and Interrupts £
after the @T portion may consist of two comma
separated elements, separately describing the This completes our extension of the event
times that the expression must remain false, and descriptor. A formal definition, along with coding
then true. For example, @TX (A) WHEN (B) would examples, follows. First, however, another a
indicate that the event muste detected whenever dimension of the sampling issue must be addressed
A is false for at least x time and then true for at to fulfill the goal of implementability--that of the
least y time. The bouncing mechanical switch can interaction between input type (polled or I
be accommodated by this notation, where x and y interrupt) and sampling sequence. To illustrate
may be set to the minimum amount of time that this interaction, we will investigate a series of
the switch will remain in each state before examples based upon an event specified by @T.(A)
changing. So long as the "settling" time for the WHEN>(B) WHEN<(C). This specification dictates
switch's bouncing is significantly less than x and y, that B must be sampled before the event, and C
this will ensure that only one event is generated after.
for each movement of the switch. I

If A, B, and C are polled variables, this specifica-

When the inputs oscillate, as in cases 2 and 3 of tion is most easily implemented by conducting a
Figure 1, the @T notation must be further poll of all three variables every x units of time, a
extended by providing a pre-condition for the using the order B-A-C. The event @T,(A) is
event. @T.,, 2(A '=: A) WHEN (B) indicates that detected whenever successive polls of A result in
the event must be detected whenever the values of false and then true. Since the exact
precondition A' is true for at least xl time, and timing of the external event cannot be determined
then A is true for at least x2 time. For the example within the interval between the two polls of A, the
of Case 2 of figure 1, if we wanted to specify an value used for B must be checked before the first
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poll of A (and retained for a full polling cycle), and If A is interrupt driven, as illustrated in Figure
C must be checked after the last poll of A. If A is 3, the timing of the event @7TA) will be better
polled, but B and C are interrupt driven, the same known. Where B and C are polled values, the
effect is achieved by storing the value of B for one last poll of B prior to the event will be used, and
polling cycle, and sampling C after polling A. C will be polled as part of the interrupt routine.

If B is interrupt driven, A must have a higher

Event Determination with 'A' Polled

Environment (Real World): @T(A)

Cnsa*Wt Tkne Deo*

Computer

Polls of A: F T
Polls of B: TIF IT
Polls of C: T/

Figure 2

This is illustrated in Figure 2. As time elapses interrupt priority, to prevent changes to the
(from left to right), the software conducts previous value of B during A's interrupt han-
regular polls of B, A, and C, in that order. The dling routine. Conversely, C must have a higher
successive values of false and true for A indicate interrupt priority than A, since A's interrupt.
that the event @T(A) occurred sometime within handling routine must be able to receive an
the shaded zone. Therefore, the values ofB and updated value of C.
C in the shaded zone, whether true or false
(indicated in the figure by "T/F"), are not useful; The above reasoning is all that is needed in cases
the circled values must be used. Although there where the required intervals between the event
is a time delay inherent in the software's access and the sampling of B and C are less than a
to external data, in this example that delay is processor instruction cycle. Where that is not the
relatively constant for all data. case, either due to temporal indeterminacy or

external relations between the conditions, delays

Event Determination with 'A' Interrupt Driven

Environment (Real World): @T(A)

Comb"ant Tire Delay

Computer
@;T

A interrupt:
Polls of B: T/F (D T/F T/F
Polls of C:

Polling Interval

Figure s
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Event Determination with 'A' Polled
and Temporal Uncertainty £

Environment (Real World): @T(A)

oVnaab Time Delay

ComputerimDea

Computer Polling nv x

Polls of A: F T
Polls of B: T L
Polls of C: ...

Ti-e Dolay y Tkne Delayz

FIgume4 5
must be inserted into the sequence of variable 6. Definition and Implementation
value checks, using numeric values with the We have asserted that the event notation should
WHEN expressions. Figure 4 illustrates the be defined in terms of the code that it requires. S
specification @TI(A) WHEN>,(B) WHEN,,(C). Therefore, for a given event expressed in our no-

tation, we define when the code must, may, and
In Figure 4 the time intervals, representing must not detect an event, based upon the
required delays and/or temporal uncertainties, information available to the software system. a
have further spread the time interval over which Predicates will be expressed with a time parame.
the real-world event may be considered to have ter; P(t) is true iff a value polled (or read from
occurred, relative to the B and C conditions. The memory, if interrupt driven) at time t makes P 1
polling of B and C must be separated from the true. This definition is described in terms of time
polling of A by at least the amount of the delay intervals, delineated by nine points in time, as
values. illustrated in Figure 5. 1

At-True Definition Time Intervals
Criteria to Trigger an Event (

_ I
Ti : 1 24 15 V to 1 1 0

A

CB

Must be True

Must be False -

Doesn't Matter [ 8 3
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DEFINITION the figure and in PART I occur, the code must de-
The fully extended event notation @T,.xI2(A'! A) tect the event once. That detection can occur no
WHEN,(B) WHEN.,(C), where xl>O A x2>0 A y> earlier than time t7 and should be no later than
0 A 26.0 A y<x2 A z<x2 A [(A' A A) -+ false], is de- shortly after t9. PART 2 ensures that each
fined as follows: condition is true at least once during each interval

during which the code should check the value of
PART 1 that condition. If so, the code may detect the event.
the code must detect an event exactly once for any This is equivalent to the circumstances in which
time interval (t7,t9) where: the original SCR descriptor was "undefined." If

neither PART 1 nor PART 2 are true, the code must
3(tl,t2,t3,t4,t5,t6,t8) such that tl+xl<t2 A t2•t6 A not detect the event. Note that, if the precondition
t3+xlt5 A t4+x2.t6 A t5+y-t6 A t6+z7.t7 A t6+x2 interval (xl) is longer than the basic polling
At8 A t7+x2_•t9 and interval (x2), then PART 2 allows detection of the

event only if the precondition is true at least once
VtJ(ttlt<t2)-+A'(t)J and during every interval of length x2 between tl and

(precondition satisfied) t2. This has the effect of requiring that the code
Vt[(t2,t<t6)-"-A(t)] and check the precondition as often as it checks the

(A is false after precondition but before t6J other conditions. Note that the time interval from
Vt[(t4gt<t6)-*--A(t)] and tI to t2 must occur before t6, but no ordering is

(A is false for at least interval x2) required between these times and t3 and t4. In
Vt[(t3<t<t5)-+B(t)] and other words, the precondition is satisfied if its

(B is true for at least interval xl) expression is true for an interval of x l at any time
Vt[(tSt<t6)-*--A(t)] and prior to A becoming true.

(A is false during interval y before t6T
Vt[(t6<t<t8)-+A(t)] and The following example is a Pascal program that

(A is true for at least interval x2 after t6) implements the expression @TxI x2(A'=* A)
Vt[(t7<t•t9)-+C(t)J. WHEN (B) WHENZ(C), using polling of A, B,

(C is true for at least interval x2) and C. Vor reasons of brevity, this code is based
upon the assumtions that y+z << x2 and that xl =

PART 2 x2. If these assumptions were not justified, the
The code may detect an event during any interval code would become more complex. An extension of
(t7,t9) where this code, relaxing the assumption to allow xl ; x2,

is included as an appendix, in Section 11 of this
3t[(tlgt<t2) -+ A'(t)] and paper.

(precondition satisfied at least momentarily)
Vt',t"([tlt'<t"<t2 A t"-t'.x2] -l

3t[(t'•t<t') -> A'(t)]O and
(precondition satisfied at least once during
every interval of length x2 between U and t2l

3t[(tlgt<t6) .- -,A(t)] and
(A is false at least momentarily before t6)

3t1(t3<t<t5) -+ B(t)] and
(B is true at least momentarily)

3t[(t6•t<t8) -+ A(t)] and
(A is true at least momentarily during interval
x2 after t6)

3t[(t7<t:t9) -- C(t)] and
(C is true at least momentarily during
interval x2)

PART 1 of the definition ensures that each
condition will be true throughout the appropriate
time interval. So long as the criteria depicted in
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001 program RealTimeProg;
002 var
003 A, APrime, B, C : Boolean;
004 TimeNow, NextTime, X1, X2, Y, Z : TimeType;
005 const
006 SmallTime : TimeType = (SmallValue); (See explanation below)
007
008 {functions Time, Initialize, Delay, PolIA, PoliB, PolIC, and PollAPrime
009 and procedure ReportEventDetected not shown)010
011 function AtTrueABC : Boolean; (Returns true if event occurs)

012 var
013 PrevA, PrevB : Boolean;
014 begin
015 PrevA A; (Save previous values of A & B)
016 PrevB B;
017 PollB(B); (Poll A, B, C with delays of Y and ZI
018 Delay(Y);
019 if not APrime then PollAPrime(APrime); (If APrime true, don't poll)
020 PolIA(A);
021 Delay(Z);
022 PollC(C);
023 AtTrueABC :- APrime and not PrevA and A and PrevB and C;
024 if A then APrime := false; (Reset pre-condition)
025 end;
026
027 begin (Main body calls AtTrueABC at intervals of (X2-SmallTime))
028 Initialize(Xl, X2, Y, Z); (gets timing data)
029 APrime := false; (set initial values)
030 A true; S
031 B :=false;
032 NextTime := Time + X2 - SmallTime;
033 repeat
034 if AtTrueABC then ReportEventDetected;
035 repeat TimeNow := Time until TimeNow >= NextTime;
036 NextTime := NextTime + X2 - SmallTime;
037 until false;

038 end S
To fulfill the definition, the choice of the value of timing of the polls. Specifically, SmallTime must
constant SmallTime in the code is crucial. Even if be greater than the maximum delay between the I
we could be assured that A, B, and C would be polling of B and A, or A and C, in excess of y and z,

polled at intervals of exactly x2, the requirements plus any variability between successive calls of
for intervals y and z could not be fulfilled. This is AtTrueABC. If a value of SmallTime that is much
because the value of A might have changed from smaller than the value of x2 cannot be found, then
false to true at any time between two successive the specifications are not feasible.
polls. Thus, we must add delays of at least y and z
when polling B and C, respectively. Yet the values In order to validate the above code, we show that: U
of B and C are not required to remain valid for any - the fulfillment of PART 1 of the definition
longer than y and z. That would mean the delay implies that the code will detect the event
timing for y and z would have to be perfect, which * the detection of an event by the code implies |
is not achievable with software. Therefore, the fulfillment of PART 2 of the definition.
SmallTime is used to increase the polling rate
enough to ensure that B and C are polled
sufficiently close to the time that A changes from I
false to true. SmallTime must be greater than the
maximum amount of error that may occur in the 3
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INFORZMAL PROOF APrime is reset to false prior to that detection,
there will be only one detection of the event until

PART I Event Detected Once the appropriate conditions are fulfilled once again.
The code will detect an event whenever the
conjunction APrime and not PrevA and A and Event Detected PART2
PrevB and C in line 023 evaluates to true. Again, let T be the time that line 020 executes,
Therefore, we show that the truth of each element immediately prior to the detect: '_- of the event.
of the conjunction in line 023 follows from the Let:
definition. Since AtTrueABC (line 011) is called t6 = T;
every x2 - SmallTime units of time, there exists t7 = t6 + z;
exactly one time T: t6 < T < t6+x2 - SmallTime t8 = t6 + x2;

when line 020 is executed. t9 = t6 + z2 + z;
t5 = t6 - y;

A A is polled at time T. Since t6 < T < t6+x2 - t4 = t6 - x2;

SmallTime < t8, A is true at time T. t3 = t6 - y - x1;

C C is polled after T, and after the delay of line t2 = t6

021. Let this be time e. The dei.7.y will be at ti = Min[t2 - x1, (the time when APrime was

least z, and less than z + SmallTime. Since set to true). Small'rime]

SmallTime < x2, we have t7 = t6 + z:5 T + z!9 c These values satisfy the inequalities on tl-t9 from
< z+ SmallTime <t6+x2 + z = W. the definition. Now we produce the times referred

T e C i to in PARTr2 based upon the polls of the values that
Therefore, C is true at time c. stsidtecnucini ie03

APrime According to the definition, A' is true for satisfied the conjunction in line 023:

an interval of at least xl, at some time prior to 3t[(tlt<t2) A A'(t)] and
A becoming true. By the program assumption, [Let t = (the time when APrime was set to
xl 2 x2, so there must be a time p when line true by line 019)]
019 is executed such that t1 + SmallTime < p tru b -- nA0t)]

:5 t2, making APrime true. APrime would then 3t[(tl-,t<t6) A -,A(t)] and< t2 maing ~rie tue. ~rie wold hen[Let t = (the time of the previous execution

remain true until A is polled and found to be of line 020 prior to t p)]

true, and line 024 is execute& This will, of ot[(t3<t<t5) A B(t)] and

course, happen shortly after time T, but only [Let t = (the time of the previous execution

after the execution of line 023, which causes of line 017 prior to t6)]

the report of the event. Let pA be the time of 3t[(tO<t<t8) A A(t)] and

the last poll of A prior to time T. By the defini- [ Let A= T]

tion of T above, pA < t6. Since SmallTime < y, Bt[(t7<Lett) A 0(t)].

pA > t3. Therefore, A is false at time pA Any [Let t = (the time of the execution of line
other polls of A, between times p and pA, 022 after t6)]
happen after time tl + SmallTime and before
t6. Therefore, all such polls of A are false, and This satisfies both parts of the definition; thus, the
APrime will be true when line 023 is evaluated program implements the definition.
after time T.

not PrevA The reasoning is the same as above 7. Other Implementation Issues
for time pA.

PrevB This is the value of B obtained in the The example program has implemented the fully
previous call to AtTrueABC. Let the time of extended form of the event descriptor for polled
that poll be b. By the specification of variables. If A were interrupt driven, the code and
SmallTime, we are assured that (T - x2 - y) < b validation would be more straightforward. The
: (T - x2 + SmallTime - y). Since t6 _ T < only added complexity would be that, when the
t6+x2 - SmallTime, we have t3 < b < t5. value of B changes, the old value and the time of

its change must be saved. Then, in evaluating
Given the above valuations, line 023 will evaluate whether the event has occurred, the old value of B
to true, causing the event to be detected upon the must be used if time y has not elapsed since the
return from the function AtTrueABC. Since change.
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Since the extended event descriptor is intended to provide *hort circuit' evaluation It should be
replace the SCR descriptor and definition, we show noted that, if the language provides short-circuit
that it can still express the simpler form of the evaluation of boolean exprebsiuns statements.
SCR notation. This is accomplished by noting that function calls could be used for polling, achieving
[OT, 1(-" A zA) WHEN,(B)J v ['l', (--A=,A) similar results However, this would make tracing

H]RN<0(B)I, under our definition, reduces to and verification of polling sequences more
@T(A) WHEN(B), with epsilon values of +x, under complex, and should probably nut be utwd- The a
the SCR definition, following code implements the bhort cuvruit*

evaluation.
The above example assumes that all values are
polled. To demonstrate the impact of polling versus • •
interrupt schemes, we provide the following (B is initially Falas)

examples of code fragments that implement the OldB :- B;

somewhat simplified expression @Tr(A) WHEN>, iof 0(B) t
if Oidb then

(B) WHEN< (C). The reader may wish to refer back begin
to Figures 2, 3, and 4 for illustrations of the timing OldA -- A;
schemes. PoA (AW; I

if A and not OldA then

a. " . The code must alternately poll B, A, begin
and C, waiting for the sequence: PolIC-C);

if C then PerforrmAction;

B is True. ende nd

A is False. end

[C is any value.) begin
[B is any value.] PoJ1B(B);
AisTrue, if B then Pol!A(Aý;

C is True. end 5
An alternative approach would allow polling of B
until it becomes true, and then beginning the al-
ternate poUing of A and B. C then need only be b. en When A becomes true, the I
polled after A and B have met the criteria, interrupt procedure must check the amvt recent
Particularly where B is interrupt driven, this value of B, and then poll C If both B and C are
would mean that no polling at all need be done true, the event is triggered.
until Rs interrupt code is called. I

Note As interrupt procedures are not
The following is a sample PASCAL code fragment defined in Standard PASCAL, uw shall
which implements the first-mentioned approach, use the rules of Borland Turbo V
External code would be required to execute this PASCAL [BORL 911. The parameter

fragment at least every x units of time. list will be a single type, rather than
Borland's enumerated list of CPU
registers. An interrupt suspends I

(A is initially True; B is initially execution of code anywhere in the
False) program (excepting higher-priority
OldA A; interrupt handlers) and causes I
•ldB B; execution of the interrupt procedure.
PollBA(A); Interrupt procedures &we access to all

PollC(C); global Luriables.
if A and OldB and C and not OldA then
PerformAction; The following code implements such a procedure

Here, B is a global variable which is polled
externally, at least once every x units of time A £

If optimization to minimize unnecessary polling is and C might be global variables, if their values are
desired, the code complexity can be increased to required elsewhere- 3
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The goal of generality is fully met by our proposed
extensions of the event descriptor, covering the

procedure Ainterrupt (Reg sequencing and input behavior issues. As
RegistersType); demonstrated in the simple coding examples, the

interr pt; (This procedure is basic form of the new descriptor is implementable
triggered any time the monitored value with simple variable checking in a single condi-
of A changes tional statement. The more complex form is also

var A, C : Boolean; demonstrated without undue code complexity. We
procedure InterpretRegisters (Registers also demonstrate the means to implement both

: RegistersType, A : Boolean); polled and interrupt-driven inputs. Finally, we
begin demonstrate a verification based on a code walk.
... {Determines correct value for A) through type proof.

end;

begin 9. Further Work

InterpretRegisters (Reg, A); The work presented here has been produced
if A and B then
begin within the context of a larger work concerning the

PollC(c); tracing between Parnas (SCR) style-specifications
if C then PerformAction and code, using the variable flavor annotations of

end [HOWD 901. During the implementation of "toy'
end; problems, it became apparent that previous

definitions of event descriptors ere unsatisfac-
In all of the above examples, if B and/or C are in- tory, as the descritors did not allow precise
terrupt driven, their interrupt procedures will specification of certain useful but complex events.
merely update global variables. As stated in Before we could trace, we required a working
section 4, the interrupt priorities will be: C > A > definition of what code is required to actually
B. implement both simple and complex event

descriptors. The production of such a descriptor is
8. Evaluating the Descriptor the function of this paper. Our next step will be to

identify what sort of annotations should be
The following table adds our descriptor to those included by the coder to document the
covered in Section 4. imolementation.

Original SCR Event Classes Extended
[NRL_8_] ISCHO 901 Descriptor

Generality:
Sequencing of WHEN condition-

Before event Y Y Y
After event Y N Y
Both N N Y
Either Y N Y
Time delays Y N Y

Input Behavior-
Bouncing N N Y
Oscillating N N Y

Implementation:
Complete definition of event N Y Y
Simple form Y Y Y
Complex form Y
Polled / Interrupt variables Y

Verification: N ~ Y
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The goal of generality is fully met by our proposed
extensions of the event descriptor, covering the

procedure Ainterrupt (Reg sequencing and input behavior issues. As
RegistersType); demonstrated in the simple coding examples, the

interrupt; {This procedure is basic form of the new descriptor is implementable
triggered any time the monitored value with simple variable checking in a single condi-S of A changes) tional statement. The more complex form is also

var A, C : Boolean; demonstrated without undue code complexity. We
procedure InterpretRegisters (Registers also demonstrate the means to implement both

: RegistersType, A : Boolean); polled and interrupt-driven inputs. Finally, we
begin demonstrate a verification based on a code walk.

(Determines correct value for A) through typeproof.

end;
9. Further Work

begin
InterpretRegisters(Reg, A); The work presented here has been produced
begin within the context of a larger work concerning the

PollC(C); tracing between Parnas (SCR) style-specifications
if C then PerformAction and code, using the variable flavor annotations of

end [HOWD 90]. During the implementation of *toy*
end; problems, it became apparent that previous

definitions of event descriptors were unsatisfac-
In all of the above examples, if B and/or C are in- tory, as the descritors did not allow precise
terrupt driven, their interrupt procedures will specification of certain useful but complex events.
merely update global variables. As stated in Before we could trace, we required a working
section 4, the interrupt priorities will be: C > A > definition of what code is required to actually
B. implement both simple and complex event

descriptors. The production of such a descriptor is
8. Evaluating the Descriptor the function of this paper. Our next step will be to

identify what sort of annotations should be
The following table adds our descriptor to those included by the coder to document the
covered in Section 4. implementation.

Original SCR Event Classes Extended
________ .... [NRL 88] [SCHO 901 Descriptor
Generality:

Sequencing of WHEN condition-
Before event Y Y Y
After event Y N Y
Both N N Y
Either Y N Y
Time delays Y N Y

Input Behavior-
Bouncing N N Y
Oscillating N N Y

I Implementation:
Complete definition of event N Y Y
Simple form Y Y Y
Complex form Y
Polled / Interrupt variables Y

Verification: N Z~T_ Y
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10. Acknowledgment polling interval x2. The following code uses a
variable APDuration, which represents an upper

We wish to express our appreciation for the bound on the amount of time that A' has been true. g
reviews, suggestions, and advice given by Bruce Although the explanation is too complex for
Labaw and Anne Rose of the Navy Research inclusion here, the comparison of APDuration and
Laboratory, and Jo Atlee and John Gannon of the XI - X2 in line 031 ensures that the code will
University of Maryland- recognize that the precondition is satisfied

whenever A' is true for an interval of at least xl,
11. Appendix: Extended Example Code and that it will only detect the event if A' is true at

least once in every sub-interval of length x2 during I
The example implementation of event-detecting an interval of length xl. Thus, this code fulfills the
code show in Section 6 requires only minor definition of @Txl x2(A'* A) WHENy(B)
extensions to allow for values of xl that are WHEN,.(C).
greater than x2. This situation would arise where
the truth of a precondition (A) needed to be
assured over a length of time greater than the £
001 program RealTimeProg;
002 var
003 A, APrime, B, C : Boolean;
004 TimeNow, NextTime, PollTime, APDuration, X1, X2, Y, Z : TimeType; I
005 const
006 SmallTime : TimeType = (SmallValue); (See explanation below)
007 U
008 (functions Time, and procedures Initialize, Delay, PollA, PollB,
009 PolIC, PollAPrime, and ReportEventDetected not shown)
010
011 function AtTrueABC : Boolean; (Returns true if event occurs)
012 var
013 PrevA, PrevB, PrevAPrime :Boolean;
014 begin
015 PrevA A; (Save previous values of A & B)
016 PrevB B;
017 PollB(B); (Poll A, B, C with delays of Y and Z)
018 Delay(Y);
019 if APDuration <= Xl - X2 then (Check precondition only
020 begin if not already satisfied)
021 PrevAPrime := APrime;
022 PrevTime := PollTime;
023 PollAPrime (APrime);
024 PollTime := Time;
025 if APrime then
026 APDuration := APDuration + PollTime - PrevTime;
027 end;
028 PollA(A);
029 Delay(Z);
030 PollC(C); £
031 AtTrueABC := (APDuration > Xl - X2) and
032 not PrevA and A and PrevB and C;
033 if A or not APrime then APDuration := 0; (Reset pre-condition)
034 end;
035
036 begIn (J'ain body calls AtTrueABC at intervals of (X2-SmallTime))
037 Initialize(Xl, X2, Y, Z); (gets timing data)
038 APDuration := 0; (set initial values) I
039 APrime := false;

040 PollTime := Time;
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041 A : true;
042 B false;
043 NextTime := Time + X2 - SmallTime; (Determine polling intervall
044 repeat (main loop--calls polling routine)
045 if AtTrueABC then ReportEventDetected;
046 repeat TimeNow :- Time until TimeNow >= NextTime;
047 NextTime := NextTime + X2 - SmallTime;
048 until false;
049 end

12. Literature [HOW'D 90] "Comments Analysis and
Programming Errors", William E. Howden, IEEE

[BORL 91] Turbo Pascal for Windows Transactions on Software Engineering, VoL 16,
Programmer's Guide, Borland International, Inc., No. 1, January 1990, pp. 72-81.
1991.

[NRL 88]Software Requirements for the A-7E
[FAUL 89] State Determination in Hard- Aircraft, Alspaugh et. al., Naval Research
Embedded Systems, Stuart Roland Faulk, doctoral Laboratory. First released in November 1978,
dissertation at UNC, Chapel Hill, June 1989. second and final release December 1988.

[HENI 80] "Specifying Software Requirements for [SCHO 901 The A- 7 Requirements ModeL Re-
Complex Systems: New Techniques and Their examination for Real-Time Systems and an
Application", Kathryn L. Heninger, IEEE Application to Monitoring Systems, A. John van
Transactions on Software Engineering, Vol. 6, No. Schouwen, Technical Report 90-276, Queen's
1, January 1980, pp. 1-13. University, May 1990.
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"Knowing where you've come from and where you are is essential to knowing how to
get where you want to go. Developing a new generation of products is a lot like taking a
journey into the wilderness. Who would dream of setting off without a map?" I

Steven C. Wheelwright and W. Earl Sasser, Jr.

INTRODUCTION

This paper proposes a product development methodology (PDM) for complex systems
evolving within the current economic climate of the United States, as well as the unstable state of
world affairs envisioned throughout the decade. The PDM facilitates the development of systems
that are "multipurpose, flexible, highly mobile, and incorporate maximum bang for the buck.",2

Ironically, the unstable nature of the development environment within the defense community
parallels the one encountered by the commercial sector over the last 20 years. Successful
companies have responded by adopting a product development methodology that adapts to ever
changing market demands and the concern for near term returns (profit).

The PDM exploits lessons learned from the commercial market analogy to establish a flexible,
low risk, cost effective approach for technological progress. The approach suits systems
development, especially those involving complex mission critical computer systems.

Examination of the commercial product development process reveals a strategy that can
achieve the procurement flexibility needed by DoD. This strategy concentrates on leveraging the
state-of-the-art in a cost effective manner. The strategy also addresses risk management.

The key to the technological success of this strategy relies on an incremental development
process. The IBM PC serves as a perfect example. The i486 based PC resulted from successful
sales of the 286, 386SX and i386 based versions. Incremental upgrades enabled IBM to respond
to changes in market demand as well as facilitate the transition of the state-of-the-art. In this
manner, IBM attained strategic flexibility.

The discussion starts at a basic level and progresses to a macroscopic perspective. This paper
contains four parts: adaptation of a commercial approach, incorporation into an overall risk
management scheme, application to an open architecture transition, and a summary.

The paper recommends using open architectures and commercial off-the-shelf (COTS) items
to implement the incremental improvements outlined by the PDM. The summary includes
guidelines for successful product development, as well as ideas for future work in this area.

AAPTAATION OF A COMMERCIAL APPROACH

Decreasing commercial product life cycles have required technologies to be developed at
faster rates.3 As a result, companies have devoted more effort to the product development
process. The process differs from company to company; however, the high tech arena focuses
on the time to market. Shortening the time to market enables a company to increase market share,
adapt product characteristics to market needs, enjoy high margins typically encountered in the
beginning of a product's life cycle, and shorten the payback period.4
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This focal point requires a company to make decisions in what Preston Smith refers to as the
"fuzzy front end" of the product development process.5 Lack of quantitative information and
organizational structure characterize the ambiguity of the "fuzzy front end." Decisions made atthis time greatly affect the product's evolution. The expensive nature of changes made down the Iroad heightens the significance of these up front decisions. As a product progresses from

planning, through design, production, test and delivery the cost to correct an error increases.6

Smith offers a simple decision analysis technique to attack problems in the "fuzzy front end."
The technique concentrates on the interrelationships between time, development cost,
performance and profit. He prefers an approach based on estimates generated quickly. Smith
believes complicated estimation tools waste time and lead to a false impression of the accuracy of I
the available data. His book presents several examples to demonstrate the merit of his approach.
Therefore, this paper concentrates on the adaptation of Smith's ideas to complex systems.

At first glance, the lack of the profit motive within the government appears to create an
obstacle to the application of Smith's approach to the development of complex systems.
However, consider the savings the government can pursue when building systems. This
viewpoint establishes the profit motive; when systems cost less, profits from savings follow. In
other words, life cycle cost savings create a profit. The analogy between profit and cost savings I
permits a modification to Smith's model for product development in the defense sector. Figure 1
illustrates the product development framework that results when life cycle cost replaces profit in
Smith's model. The arrows indicate relationships between the areas identified in the circles.

I

I
I
I

Figure 1. Product Development Framework I
Note, this model separates development costs from life cycle costs. This definition differs

from the definition of life cycle cost used in Naval acquisitions. For Naval acquisitions, life cycle '
cost is the sum total of the direct, indirect, recumrng, non-recurring, and other related costs
incurred, or estimated to be incurred in the design, research and development (R&D), investment,
operation, maintenance, and suppoj t f a product over its life cycle. 7  3

The product development framew,)rk fosters decisions based on time, performance,
development cost and life cycle cost tradeoffs. To achieve savings, the product development
fram~ework must assume a baseline for time, performance and cost. An existing system functionsi
as the baseline. The baseline system establishes cost and performance ceilings. Measure time,I
performance and cost in terms of the incremental contribution to the baseline system whendeveloping new products for existing systems. m
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This paper uses qualitative reasoning to demonstrate the utility of the product development
framework. A color coding scheme depicts the incremental contribution for each area. Ideally,
the color coding scheme would use a traffic light pattern. Picture red for an undesirable rating,
yellow for an indeterminate condition and green for a favorable estimate. Figure 2 exhibits the
alternate color coding scheme used in this paper to facilitate duplication of the material.

. Decreased performance,
increased cost, or
increased time (red).

Indeterminate (yellow).

O Increased performance,
decreased cost, or
decreased time (green).

Figure 2. Color Coding Scheme

A quantitative analysis would eventually replace qualitative reasoning. The progression of
time enables the analysis to improve as more information becomes available and decisions are
revisited. Hence, the quantitative analysis gets fine tuned as the product becomes well defined.

This product development framework facilitates the assessment of life cycle costs,
development costs, and development time for specific performance requirements. Continued
appraisal will result in a set of performance requirements that meets cost goals.

One problem not represented directly in the framework is the difficulty mustering support for
the acquisition of systems on the basis of life cycle cost. Opponents can attack the fidelity of
forecasts beyond a 5 year period.

However, a shorter product development cycle addresses this problem by trimming the
payback period. The payback period is the time it takes to recoup the initial development cost
through life cycle cost savings. Reduced payback periods strengthen life cycle cost estimates.
The incremental product development approach capitalizes on condensed payback periods.

The framework addresses issues on a discrete product basis. Examples of discrete products
include: disk drives, power supplies, and stand alone computers. In contrast, complex computer
systems represent an amalgam of discrete computer products. They require a technique that
weighs each decision on a macroscopic level. The four element diagram cannot guide complex
decisions without a higher level of abstraction. The next section outlines the higher level.

RISK MANAGEMENT FOR COMPLEX COMPUTER SYSTEMS

Many discrete technical approaches compete for attention in the 'fuzzy front end" of complex
computer systems development. The aforementioned product development framework expedites
decisions on a case by case basis, but cannot manage a complex computer system in its entirety.
A useful methodology must provide a map for macroscopic considerations. This consideration
differentiates Smith's commercial technique from complex systems development. Nevertheless,
Smith's framework forms a foundation for the map used in the higher level of abstraction.

Basically, the methodology sets the stage for each discrete approach to compete in terms of
time, cost and performance. A three step process establishes a clear path from the "fuzzy front
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end" through product definition to a low risk development scenario. Figure 3 illustrates this I
process for the development of a complex computer system on the basis of cost.
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Figure 3. Product Development Methodology 3
The first step identifies each discrete candidate. Identification requires at least a subjective

description in terms of time, performance, life cycle cost and development cost. In fact,
subjective approaches accelerate the process. A plethora of candidate approaches typicallyI
overwhelms the front end of complex computer system development. A detailed quantitative
analysis of each would consume time and money.

A RAND study of process plants demonstrates the lack of accuracy of data in the 'fuzzy front I
end." Process plant estimates generated on the basis of R&D data alone, can easily overrun
budgets by 100%. As the level of project definition and quantity of engineering data increase,
overruns decline to about 10% at a full cost design stage.8  I

Ensure early efforts focus on the rapid development of high potential products, rather than upfront detailed cost analyses. Get products into existing systems quickly. Keep the up front
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analysis simple to reduce development costs. Mitigating costs reduces risk. In the long term, the
incremental product development methodology promotes a diversified development portfolio.

Breaking down the complex system development into a step-by-step sequence of limited
challenges contains risk and cost. Northern Telecom's venture from analog into digital switching
systems for the telecommunications industry serves as an example. Instead of going for the local
DMS 100 switch right away, the company started with the development of a PBX (private branch
exchange), which gave it a base for understanding important new technologies, digitization
techniques, advanced programming languages, and network design. Treating the effort as a step-
by-step sequence of more limited challenges allowed Northern Telecom to contain its
development risk and keep development costs from going through the roof.9

The second step involves a discussion of each candidate approach. The discussion includes
establishing fundamental criteria for advanced development, technology insertion and future
consideration. Discussion challenges the subjective nature of the data.

The third and final step sorts the candidates into those considered for immediate advanced
development, future technology insertion, and further consideration. At this part of the
development process the high priority candidates require a detailed quantified analysis.
Depending on cost goals, products can move to and from the advanced development model
(ADM) and technology insertion. Existing ADM products replaced by candidates from the
technology insertion area act as contingencies; they create a backup in case of product failures.

The identification, discussion and prioritization (IDP) of discrete candidates lead to system
definition. Figure 3 shows how development proceeds from the 'fuzzy front end" to clear-cut
product definition. The process mitigates risk by giving priority to approaches that yield the
biggest cost savings with the shortest payback period. As time progresses the product becomes
well defined and information is available to make decisions quantitatively rather than qualitatively.

APPLICATION OF THE PDM TO AN OPEN ARCHITECTURE TRANSITION

Traditionally, combat system development requires a quantum leap in performance. Figure 4
exemplifies the computing throughput required by expanding sensor array configurations.

0

Increasing Sensor Array Size

Figure 4. Quantum Leap in Processing Requirements
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In addition to greater computational requirements, this trend also creates demands for faster I
communication links and denser memory configurations. One approach to meeting these
demands involves the incorporation of an open architecture. Open architectures leverage fast
paced commercial technology development by maintaining compatibility with commercial I
standards.

Case histories show building off existing foundations of core technologies generates success
in the commercial sector. Companies that focus new products on extensions to a single key I
technology are far more successful than those that pursue technical diversity. "The best
opportunities for rapid growth come from building an internal critical mass of engineering talent
in a focused technological area, yielding a distinctive core technology that might evolve over time,
to provide a foundation for the company's product development."' 0  I

Accordingly, the transition from an existing sensor processing system to an open architecture
based system offers a prime example of the utility of the PDM proposed in this paper. The
combination of the PDM and open architecture philosophies facilitates future technology upgrades
for the sensor system. Hardware and software commonality contain costs.

Figure 5 shows an open architecture for a sensor processing system. The key features of this
architecture are the sensor distribution network, the data distribution network and the common I
processing cabinets. The common processing cabinets fit into the open architecture scheme by

utilizing a commercially available bus architecture for the backplane. Any vendor can integrate
equipment into the system as long as they adhere to the interface standards. i

Mission Al Sensor Arrays Al 3
Reconfigurable

Software &

Control SC Signal Conditoners SC

1 Arraly(s) Signal Distribution Network I
BII

:Bul.k• 
PrcPprStorage ;....

S~~Dat~aDistribution Network !

S• • •Processing

IDisplay Distribution Network 1
•, *. a n Display Consoles

Figure 5. Notional Open Architecture
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The lack of mature standards poses an obstacle to the implementation of open architectures.
For example, many of the Next Generation Computing Resources (NGCR) initiative's interface
standards have not been written. Therefore, cost and performance are indeterminate.

In addition, many existing combat systems do not possess open architecture attributes. On
one hand, existing system baselines minimize development costs. On the other hand, open
architectures facilitate life cycle development. The current fiscal environment within DoD does
not favor system development programs with a high cost profile. Nonrecurring engineering
funds are shrinking. An incremental transition from an existing system to open architecture
would spread out the cost and mitigate the risk. The incremental approach also advances the long
term goals of open architectures.

The product development methodology proposed in this paper helps attain this goal. Using
an existing system as a baseline, the transition takes a low risk path to incrementally integrate
open architecture concepts into the complex computer system. Figure 6 depicts this concept for a
generic sensor processing chain.
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by bypassing the existing beamformer. Graduallh change the system as technology becomes
available at a suitable cost. Eventually, the open architecture replaces the baseline sensor chain.

The PDM facilitates consideration of various implementations for each functional block.
Commercial off-the-shelf equipment serves as an excellent implementation for initial product 3
development. COTS equipment maintains the cost for initial test and evaluation. Test the COTS
prototypes for shock, vibration, temperature, etc., and deploy the equipment with acceptable
performance. Militarize the COTS equipment if environmental test results fall short of I
expectations. Risk mitigation occurs because the government expends additional capital only for
verified performance. In addition, the availability of the baseline system serves as a contingency
to reduce the risk of product failure.

Table I clarifies the utility of the PDM for a next generation sensor system. In this scenario, a I
sensor system already in production serves as the baseline. Generic candidates for technology
insertion includes today's technology, near term upgrades, and projected future commercial
technology.

- ,1

Today's Technology Future (>5 Years)

Processing Type Technology Near Term (<1 Year)

Conventional Beamformers 4,000 MIPS 4,000 MIPS 40,000 MIPS
Adaptive Beamformers NA 0.3 GFLOPS 5 OFLOPS
Signal Processing 0.3 GFLOPS 2 GFLOPS 21 GFLOPS
Data Processing 70 MIPS 70 MIPS .300 MIPS
Data Processing 35 68030s 35 68030s 130 68040s
Data Processing & 1/0 130 68030s 130 68030s 500 68040s

* All units represent effective capability on a per cabinet basis. I

Table I. PDM Application to Open Architecture Technology Insertion

Note the equipment undergoing advanced development functions as an excellent augmentation
to the baseline system. The technology insertion category would include near term signal
processing and adaptive beamforming technologies. Future oriented technologies, which include I
parallel processors (e.g., iWarp, Paragon, Connection Machine) repackaged in multichip
modules, do not demonstrate a definitive payoff. The PDM suggests reconsideration of these
technologies when the commercial market brings down the cost. In the interim, develop the
network interface units to facilitate the insertion of the advanced technologies as the market
matures.

I
I

368 3



Complex Systems Engineering Synthesis and Assessment Technology Workshop, July 20-24, 1992

SUMMARY

This paper proposes an economical product development methodology for complex
computer systems. The PDM exploits the commercial market analogy to establish a flexible, low
risk, cost effective approach for technological progress. The strategy pursues the state-of-the art
while addressing risk management. The key to the methodology is an incremental development
process.

The PDM assesses discrete candidates and simplifies macroscopic decisions. The process
provides the opportunity to pursue the state-of-the-art while concentrating on choices that
emphasize low risk, cost savings, and short payback periods.

Several guidelines enhance the chances of attaining this objective:

1. increase performance/technology in an incremental fashion,

2. use subjective decision techniques to eliminate poor candidates from the start,

3. fine tune detailed quantitative analyses as the product becomes well defined,

4. create a diversified development portfolio directed at a quantum leap in technology,

5. use COTS equipment for rapid prototyping,

6. build products quickly to reduce development costs, and

7. cultivate products with short payback periods.

The methodology has particular application to complex mission critical computer systems.
An open architecture transition illustrates the utility of the IDP product development
methodology. The PDM sets priorities for a sensor processing chain by subjectively identifying
the time, cost and performance characteristics of candidate technologies.

System engineers can use the product development methodology described in this paper by:

1. creating a detailed handbook to guide decisions,

2. devising an expert system to expedite the selection for technology insertion,

3. applying software tools which refine the hierarchical decision process, and

4 using the PDM as a basis for developing complex mission critical computer systems.

The PDM integrates the choices input at lower levels into higher level systems engineering
decisions. System engineers could clearly define the affect of the paths from subsystem to
system level design. Each candidate at the lower level contributes to overall cost, performance,
schedule an! i1sk assessments. In this manner, the PDM enables an efficient approach for
systems engineering.
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Abstract

In this paper we propose several strategies for improving the safety margin of a real-tirne system
using the rate monotone algorithm, by utilizing application chara.cteris ics. The rate monotonic
scheduling algorithm assumes that all tasks are initiated simultaneously. In this work, we relax this
worst-case assumption and determine the optimal initiation times for a 2-task system to increase
the utilization bound of the system. It turns out that the achievable utilization depends also on the
relationship of task periods. We then investigate this relationship and show how task periods may
be modified to further optimize the utilization bound. This results in an increased safety margin

of the system. We derive analytically expressions for optimal initiation times and utilization bound
for a 2-task system. Extending a similar analytical study to a system with an arbitrary number of
tasks is extremely complex. So we develop algorithms using the same ideas and simulation results
show a similar increase in the safety margin of the system.

'1 Introduction

SThe rate monotonic scheduling algorithm was intr duced by Liu and Layland [3] and is known to be
optimal among static, priority driven, preemptive scheduling algorithms for real-time environments,
subject to its underlying assumptions. It is optimal in the sense that no other fixed priority assignment
rule can schedule a task set which cannot be scheduled by the rate monotone priority assignment.
The assumptions include strict periodicity, task independence, constant running times. Some of these
assumptions restrict applicability to specific system models. Sha and others (1, 2, 5, 7, 6] have enhanced
this algorithm by devising techniques to deal with non-independent task sets, aperiodic tasks, stochastic
execution times and resource sharing. These were attempts at making the rate monotone algorithm
applicable to different system models, by relaxing some of the assumptions. In our work, the system
model is the same, but we use the semantic information about the application to avoid worst case
situations. The two characteristics we exploit here are the task initiatwn times and the task periods.

Liu and Leyland [3] showed that simultaneous initiation of tasks creates worst-case situations. Sub-
sequent research has continued with this assumption. Similarly current research also assumes that tasks
have some fixed user-specified periods. The motivation for this research stems from the fact that in typ-
ical practical applications, system designers do have some choices in the selection of the exact periods
and initiation times of periodic tasks.

I
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For example, an application sach as the space station may contain several kinds of periodic tasks: data
acquisition tasks, such as obtaining and recording the values from sensors; situation monitoring tasks,
such as the cabin temperature monitoring performed by the life support system; and control applications, I
such as navigation. The periodicity requirement on data acquisition and situation monitoring is typically
of the form "perform at least every 5 seconds". If the system designers actually choose a shorter
period because that fits the scheduling, the system performance will only be improved. Also, since the U
requirement is only that each task be performed periodically, unrelated tasks may not have any restriciton
on their relative phasing. The time at which the cabin pressure is monitored can be quite independent
of the time at which navigation commands are issued. Thus, except in cases where a particular phasing
is specified because of dependencies, designers can phase tasks in any way which suits the scheduling.
Since most other real-time applications also commonly perform data acquisition, control and monitoring
functions, similar flexibility is likely to be available in a wide range of systems. I

We utilize this flexibility to obtain two kinds of benefits in the design of the scheduling. The first
is to enhance the schedulability of the system by increasing the utilization bound. In doing this, it is
possible that some task sets which were previously unschedulable may now become schedulable. The
second goal of our work is to increase the safely margin of the system. If we have determined bounds I
on the computation times of the tasks in the system, and the analysis shows that the set of tasks is
schedulable, it is still desirable to provide for exceptional situations where the computation times of some
tasks happen to exceed the computed bound. We use the term safety margin to denote the extent by I
which the system utilization may increase before the scheduling breaks down and deadlines are missed.
By adjusting task initiation times and selecting task periods appropriately, we increase the safety margin
of the system, at no run-time cost. 3

Our work is divided into two parts. The first is an analytical study of a 2-task system. We determine
optimal initiation times, methods to modify the task periods and study the effects of these modifications
on the safety margin of a 2-task system. However, it turns out that the analytical techniques used do
not extend conveniently to multi-task systems. Hence, in the second part of our research, we develop I
algorithms to determine initiation times for the tasks and to modify the periods in order to improve the
safety margin. We evaluate the performance of our algorithms by a simulation study, which involves
determining the breakdown utilization of the task set as described by Lehocz'_., ;-t and Ding [1].

The remainder of the paper is organized as follows. In section 2 we introduce the previous enhance-
ments to the rate monotone algorithm to which this paper is a contribution. In section 3 we present
the analytical study of a two task system and illustiate by examples how the results can be used. In I
section 4 we develop algorithms to determine initiation times and modify task periods, in a system with
an arbitrary number of tasks. We also describe a simulation study to evaluate the performance of these
algorithms and present the results. In section 5 we summarize our results and conclude our work.

2 Background 3
Liu and Layland [3] developed analytical results on the behavior of the rate monotone scheduling algo-
rithm. In order to do so they made a number of assumptions that include strict periodicity, constant
running times, independent task sets and simultaneous initiation of tasks.

The rate monotone algorithm assigns higher priorities to tasks with higher request rates. Such a
priority assignment is optimn'm in the sense that no other fixed priority assignment rule can schedule
a task set which cannot L scheduled by the rate monotone priority assignment. The request rate of a

II
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task is defined to be reciprocal of its request period. The utilization factor of an n task system is defined
to be

i=1

where Ci is the computation time, and Ti is the period of task ri, 1 < i < n.

They proved that this algorithm can schedule any set of n periodic tasks with processor utilization
no larger than n(21 - 1) or any task set of any size with processor utilization below In 2 ; 0.693 [3].
They show that a critical instant occurs when requests of all tasks arrive simultaneously, and this is the
worst-case situation i.e. if all deadlines are met during the critical region, the system will always meet
all its deadlines.

The Liu and Layland bound decreases monotonically from .83 when n = 2 to loge2 = .693 as
n -- oo. However, the rate monotone algorithm can often successfully schedule task sets having a total
utilization higher than .693. In fact, task sets with utilization as high as .9 are often schedulable. This
suggests that the average case behavior is substantially better than the worst case behavior. Lehoczky,
Sha and Ding [1] describe an exact schedulability criterion to determine task set schedulability. They
perform a stochastic analysis and determine that for uniformly distributed tasks, a breakdown utilization
of .88 is a reasonable characterization of breakdown utilization level.

Sha, Lehoczky and Rajkumar [51 address the problem of stochastic execution times. In many ap-
plications the worst case execution time is much larger than the average case execution time and a low
processor utilization would result if it is to be ensured that the system never becomes overloaded, Hence
in order to achieve a reasonable average processor utilization a scheduling algorithm must be able to
take care of transient overloads. A period transformation method is developed to enhance the stability
of the algorithm.

A real-time system has both periodic and aperiodic jobs. Lehoczky, Sha and Strosnider [2] developed
the Deferrable Server (DS) and the Priority Fxchange (PE) algorithm, based on the rate monotone
scheduling algorithm. Both algorithms give a greatly improved average response time for soft deadline
aperiodic tasks while still guaranteeing the deadlines of periodic jobs. The Extended Priority Exchange
(EPE) algorithm, an extension of PE was developed by Sprunt, Lehoczky and Sha [7]. Sprunt, Sha and
Lehoczky [8] devised the sporadic server algorithm, an improvement over the above algorithms.

Sha, Rajkumar and Lehoczky [6] have developed a priority inheritance protocol and derived a set of
sufficient conditions under which a set of periodic tasks that share resources using this protocol can be
scheduled using the rate monotone algorithm.

All of the above enhancements are attempts at making the rate monotone algorithm applicable to
different system models. Our work however focuses on the avoidance of worst case situations. The key
concept in our work is avoidance of critical instants. We first show how this can be done by choosing
initiation times of the tasks. Then we show how task periods may be selected to avoid simultaneous task
arrivals. We do this for a system of two periodic tasks by analyzing the structure of task arrivals in each
time period. We then analyze how these modifications affect the safety margin of the system. Extending
the analytical techniques to a general n task system is extremly complex. We describe algorithms
to determine initiation times and task periods based on these ideas and determine by simulation the
improvement to the safety margin of the system.
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3 Analysis of a 2-Task System

3.1 Structure of Task Arrival Patterns

In this section we derive the request patterns over different periods for the case of two periodic tasks.
Assume without loss of generality that T7 < T2 . The rate monotonic scheduling algorithm assigns higher
priority to the task rl. Let the ith period of a task be the interval between the arrival of the ith request
and the deadline for that request. Let Ii denote the ith period of the task r2 . Since the rate monotonic
algorithm is preemptive and r1 has a higher priority, the available time for the execution of T2 in Ii is I
the amount of time that remains in Ii after executions of the task rf. Let C2 . denote the available time
for the execution of T2 in Ii. $

If for some i, the execution time C 2 of the task r2 is larger than C2 ,, then the system consisting of
these two tasks is not schedulable [3]. The key idea here is to move the starting time of the second task
r 2 so as to maximize the smallest C2, over all i. I

We derive the structure of I,'s based upon the periodicity of the tasks and the assumption that
periods T, and 7T2 as well as the run-time C1 are constants. In this section we determine how this
structure changes depending on the relative starting points of the two tasks.

The structure of Ii can be characterized by the first request of the first task r1 in Ii. Let Di denote
the time interval between the ith request of the task r2 and the first request of the task ri in Ii. Let k
be the least common multiple of T, and 7T2 divided by T2 . Hence, Di = Do. g
Observation 1 Di 's are distinct for all 0 < i < k - 1.

We can characterize 1i by its Di. Let DJi be a sorted list of Di's for 0 < i < k - 1. Let 1j be a list of I
Ii's with I' corresponding to /D. If the task r2 starts 6 after the start of the first task r, then for all Di
that are larger than b, Di will decrease by 6 and for all Di that are smaller than 6, Di will increase by
T, - 6. Let 5i be that updated Di:

Di J b. ifO0< 6< Di
D)i Di-6+T1  if D(i) < 6 < T(
6 - D(i) if-Di < 6 < 0
T, - Di + 6 if-T, < 6 < -Di

Let Di's be a sorted list of Di's for 0 < i < k - 1.

Observation 2 If there are i and j such that Di - ]i9 then D' = D' for all r. I

Lemma 1 For allO<i< k-1 D+ k

There are two consequences to this lemma. For any starting point 6 of the second task r2 there are I
k distinct interval structures of r2, where k is dependent on periods T, and T2 only. Second, since the
entire system has translational symmetry with period T', it is sufficient to consider starting points of

the second task between 0 and -T. Also, shifting r 2 by 0 S< -T is equivalent to shifting rT by -S or
by St -5.

I
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Figure 1: Relationship between C1 and the end of the first period of r2

3.2 Determining Optimal Initiation Times

In this section we consider TI, T2 and C, to be given, and we shift the starting time of T, by 0 < S < k

in order to maximize the running time of r2 for which the task set is still schedulable. Let C2 be the
maximum running time of r2 for S = 0 and C2 + C2 be the maximum running time over all S.

From Lemma 1 when two tasks start together we know that the first request of the task r1 in I.'
arrives at mrL from the beginning 1, where 0 < m < k. Let us consider several cases of the values of
C1 and their relationship to the starting point of the first task r1 (see Figure 1).

Let the second task be initiated at time 0 and the first task be initiated at time S < 0. Note also
that by definition

IT - T,[ Jl>2 T'

as long as T2 is not a multiple of T1. (If T2 is a multiple of TI, Liu [3] shows that a utilization of 1 can
be obtained.) The time available for the execution of -r2 in Ii is simply the time when r, is not executing
and it changes with S.

Due to space limitations, detailed proofs of the results shown below are not included here. However,
proofs of these and other results may be found in [4].

Case 1 : When C1 is such that the last execution of r1 in I0 ends at least -T before the end of Io, any

shift of the starting time of rl to the right does not change the available time for the execution of
r2 in the critical region, since the time gained at the beginning of the period equals the time lost
at the end of it. Hence, when 0 < C1 :< (T2 - T, L-T1-J) - T, no increase in utilization is possible.

u = 1 + c,(-) - (-)r Li (2)

U monotonically decreases with increase in C1 .
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Case 2 : When C, is such that the last execution of r, in 10 ends at least -jJ after the end of the period
of r2, then (T2 - Ti L2J) + . < C1 < Ti. Let us shift the starting point of r, to the left by
0< S < -L. The time available for execution of r2 in the critical region IP does not change, since
r, will execute during the time gained at the end of the period and was executing in the time lost
at the beginning of the period. Hence, as in the first case no increase in utilization is possible.

AT J + T. (3)

U monotonically increases with increase in C1 . 3
Case 3 : When C, is such that the last execution of r" in 10 ends between _ri before the end of 10 and

the end of 10, then a shift of the starting time of r, to the left changes the available time for the
execution of r 2 in its first period. In this case (7T2 - T LT-,J) D < 5C T<72 - T-1 [-R J

__ _ __ _ c;-j-T +-'+C T LTZAJ -T,+ T.+ Ci
C2=S=2 and U' = -

Case 4 : When C, is such that the last execution of r, in lo ends between • after the end of 10 and
the end of I0 then a shift of the starting time of ri to the right changes the available time for theexecution of r2 in its first period. In this case T"2 - T, L-T-1J <_ C, _< T2 - T, L-TT12J + _TV

V.sT-,[J • C , C' T2-Tt-TTj+"_CT,IJ +T'- C,

S and U c - 2

In both Case 3 and Case 4 the new utilization is j
U= -+-+ (4)TI T2  T2 3

where C2 is the maximum possible increase in C2 in the critical time zone, due to the optimal starting
times of the tasks.

1 1 T, T2 T (T2U=- +(*-•L Dj+(• T + -•-[ )J- 1) (5)

Let f = - - LTT- J. Then utilization U is a function of f and has the following dependency on it. 3
*If f < 1 then U monotonically decreases with increase in C1.

* If f > 1 then U monotonically increases with increase in C1 . I
• If =f then U is a constant.

The figure 5 represents the variation of the processor utilization bound with the execution time of 3
the first task C1 . It also compares the utilization bound obtained by having both tasks start at the
same time U(old), with that obtained by having them start at different times, U(new). We notice that
U(new) is an improvement on U(old) in regions of C1 where U(old) has its minimum value.

3
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3.3 Modifying Task Periods with Optimal Initiation Times

In this section, we try to improve the processor utilization bound by changing slightly, the periods T,
or T2 or both, of the two tasks rl and r 2, respectively. In section 3.2 C1, T, and T2 are assumed to
be constants and C2 is adjusted to fully utilize the available processor time in the critical time zone.
Then the difference in starting times of the two tasks that gives the maximum possible increase in C 2
is determined and U is given by equations 5. Here we assume that the two tasks start at the different
starting times, such that it gives the best improvement of utilization bound.

In the range
2 72- T 1ITJ] - L'<C, 5T2 -Tb- L T2J+TT, k" .T, Tk

improvements of utilization are possible.

1. If f < . U monotonically decreases with increase in C1. Minimum occurs at

C1 T-TT2J T1T, Tk

The utilization bound is
U(new) I - A(l - (f + D)) (6)

I+f
where
f ?= I -[TT--J and I = -TT1,J.

2. If f > ½ U monotonically increases with increase in C, Minimum occurs at

C, = T2- T, LTJ- T '

T, k

The utilization bound is

U(new) = I - (I -+ - (7)
1+f

3. If f = ½ U is a constant. Minimum occurs over the whole range

T2- T[ L"2J - L' < Ci <T2 Ti - +T-

U(new) is given by any of the above equations 6, 7.

In the paper by Liu and Layland, the utilization bound is

U(old) = I -Al. - f) (8)1+f

Each value of f has only one value of k associated with it. If f = -•, where a, b are relatively prime
integers, then k = b. Thus given the value of f, the value of k can be determined. Each finite value of k,
k > 2, has finite number of values of f associated with it. The values of f associated with k correspond
to , where z is any integer, 1 < z < k, and x and k are relatively prime. For example, if k = 6, the
corresponding f values are - and •. Thus, the number of values of f associated with a single value of k
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depends on whether k is prime, and if not, the number of integers less than k that have a common factor
with k. Thus for a particular k, all possible f values can be generated, and hence all possible values of
the utilization bound.

Table 1 (Appendix A) shows the various utilization bounds for 2 < k < 20. It is obtained by
generating all possible f values for each k value and substituting in equations 6, 7.

Graph 1, obtained from this table, is a plot of both U(old) and U(new) for various values of f and
k.

3.4 Safety Margin

In a lot of applications, task execution times are stochastic, and the worst case execution time is much I
more than the average execution time. If the system was designed to take care of all overloads, a very
low utilization would result. Hence, in order to have better utilization the system must have the capacity
to handle occasional transient overloads.

Increase in execution times of the tasks, increases the utilization of the system. If the utilization
bound is high enough, this will not affect the schedulability of the system. Thus, the safety margin,
which we define as the difference between the utilization bound of the system and the actual utilization
of the system, becomes important.

In this section we compare the safety margins of two systems, defined as follows.

System 1 : A system of two tasks r, and r2 with periods T, and T'2, execution times C1 and C 2 ,
respectively. Both tasks are initiated at the same time as considered in Liu and Layland's paper.

System 2 : Same as the first system, except that 3
"* The starting time of one task is changed relative to the other, so as to give the best possible

improvement to the utilization bound and

* T2 is changed to T, by an amount z, to get further improvement in the utilization bound, as shown I
in the previous section.

In System 1, let UA be the actual utilization of the system and UB be the utilization bound of the 5
system.

In System 2, let UA be the actual utilization of the system and UB be the utilization bound of the

system. k' is the least common multiple of T, and 7T divided by T;.

Equations for UA, UB, Uý are obtained from [3]. Equations 2, 3, 5 are used to determine Uý.

Now we compare the safety margins of the two systems, over 0 < C1 _< T1 . We define the increase in 5
Safety Margin to be

We define, 
(UI -UA)-(UB -UA)

x =T72- L - and y =T2 -TL

We assume, j - iLkj

I
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This assumption is valid because, as shown in the previous section, k is decreased by changing T2 in
such a way as to obtain the largest possible common factors between (T2 mod TI) and TI. All possible

values of (T2 mod TI) can be obtained by changing T2 , but still maintaining L[2J] = L[t
Also, z < T

- 1

Since the periods of the tasks are changed only to improve utilization bounds, it is reasonable to
assume that small changes of periods are preferable.

The Figure 2 represents the relationship between the utilization bound and C1 (the execution time
of the first task), for both systems.

Case 1 : T"2 is increased by z. The actual system utilization decreases. Clearly for some ranges of C1 , the
utilization bound increases for system 2 and hence there is an improvement in the safety margin.
In the other ranges of C1 , equations for utilization bound are considered and the conditions under
which there is an improvement in the safety margin of system 2 are derived. Refer Appendix B.

Case 2 : T2 is decreased by z. For some ranges of C1 , there is an improvement in the utilization bound
of system 2. But since T'2 is decreased, there is an increase in the actual system utilization. Hence
for all ranges of C 1, the conditions for the improvement of the safety margin are derived from the
equations for the actual utilization and the utilization bound of the two systems. Refer Appendix
B.

A method to choose z

From the results obtained, we describe below, a method to choose z.

If the possibility of variation of the computation time of the first task (CI) is known to be in the
low ranges ie., below x, then an increase in T2 by z would give an increase in safety margin. The only
restriction on z is that z < -T-, since this would mean that z < T-, since k > k'.

If it is known to be in higher ranges ie., above x, and the utilization of the system is in the range

1 T_ fT - Ci
2 T2

then an increase in safety margin can be obtained by decreasing T2 by z, wherm z is chosen to satisfy the
conditions,

z T,-2( and z < k 2C,, + C, -CI)

T1  T7 2 A

In both cases there is an assumption that z < !4 . Since we change 7T2 in order to reduce k, k' < k

and hence, we can choose z < -L. Also after z is determined, the condition [TJ = [.J should be

satisfied.

3.5 Using the Results

In this section we see how the results obtained in section 3.2 and section 3.3 can be applied. In section 3.2
we determined that if the two tasks start at different times, then depending on the difference in starting
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Figure 2: Variation of utilization bound with C1  I
times, there is an increase in utilization factor for some ranges of C1 , where the value of utilization is
minimum. In section 3.3 the optimal difference in starting time is used. From the equations for U(old)
i.e., both tasks starting at the same time, and the equations of U(new) i.e., with the optimal time
difference between the starting points of the two tasks, we see that U(new) is definitely improved by a
positive value 1 * 1 for f > 1 f* -1 for f < '. Thus, just by having the tasks to start at different
times, and especially if the difference is optimal, the upper bound of utilization factor can be improved.

Another way to improve the processor utilization bound is by changing slightly T, or T2 or both.
U(old) is a function of f. f is a positive fraction 0 < f < 1. The minimum value of U(old) occurs for i
f = 0.4. U(old) increases as the value of f moves away from 0.4 towards 0 or 1. Small changes in f
cause small changes in U(old). Thus, it is possible to increase U(old) by changing the value of f. Since
the minimum value of U(old) lies at f = .414, the value f of should be moved away from .414.

U(new) is a function of both f and k. With change in f it behaves in a similar fashion to U(old)
except that some values of f give lower values of k, and for such values, U(new) improves drastically.
The best value of k is 2, and this gives a utilization factor of 1. Thus, it is possible to increase the upper i
bound to utilization factor by decreasing the value of k. In particular if k = 2, U(new) improves to 1.

!
I
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However for very high values of k, say above 20, the change in U(new) for small change in k is small.

Small changes in T2, with T, constant, introduce small changes in f. Small changes in T1, with 7T2
constant, introduce either small or large variations in f.

Consider T, being constant and T2 being varied slightly. There could be only a small increase in
U(old). However, this could result in a large increase in U(new), since changes in T2 can reduce k to a
low value.

k can be reduced in the following way. f = -T [J, f can also be written as T . If f = 10)

a, b being relatively prime integers, then k = b. Thus, if T, is prime, or T2 mod T1 is prime, or T1 and
T 2 mod T, are relatively prime then k = T, will be high since 1 < k < Ti. Otherwise f = (T, dT.) can
be rewritten as f= • where a,b,i are integers such that T2 mod T, = a. i, and TJ = b - i and i A 1, so
k = b, b < T, and so k is small. The closer i is to T2 mod T, the better.

EXAMPLE

Here we present a numerical example which illustrates the gains possible by modifying initiation times
and periods. Consider the case when T1, not a prime number is held constant and T2 can be varied
slightly. T2 can be adjusted so that T2 mod T, has a common factor with T1, as close to T2 mod Ti as
possible. Let T" = 18.

1. If T 2 = 26 then T2 mod T1 = 8, GCD = 2.

f T 2 modTi -8 4
T, 18 -9

k=9
U(old) = .829
U(new) = .867

2. If T 2 = 27 then T2 mod T1 =9, GCD =9.

TmodT, - _ 1
T, 18 2

k=2
U(old) = .833
U(new) = 1.0

3. If T2 = 28 then 7T2 mod T1 = 10, GCD 2.

T2 modT -= 10 5

k=9
U(old) = .841
U(new) = .873

From the above three cases it is evident that if the original value of 7T2 was either 26 or 28, then
by just changing it to 27 the utilization bound can be improved from .867 to 1.0 and from .873 to 1.0,
respectively.

When 7T2 is changed to 27 from 28 however, there is an increase in the actual utilization. If for
instance C1 = 5 and C2 = 8, the actual utilization increases from .564 when 7T2 = 28 to .574 when
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T2 = 27. But this increase is small when compared to the improvement in utilization bound. Also it is
not always necessary to decrease T2, an increase in T2 could also improve the utilization bound while
decreasing the actual utilization. In either case, the safety margin, which is the difference between the
actual utilization and the bound, may be increased considerably.

Keeping T2 constant and changing T1 could also similarly improve U(new) by reducing k sufficiently. 3
However it should also be noted that, since U(new) is a function of both k and f, in some cases a

reduction in the value of k alone is not sufficient to guarantee an increase in U(new). Usually the best
improvement can be obtained when the original value of f is close to .4. If the original value of f is
close to 0 or 1, the utilization bound is already high and only when changes in T, or T2 reduces k to 2,
an increase is guaranteed because U(new) improves to 1.

Also, this method of having different starting points, to improve the upper bound to utilization can I
only be used if the ratio of the periods of the two tasks is rational. This question however does not arise

in practice because b3th periods would be derived from the system clock, and hence, their ratio will
always be rational. 3
4 Many-Task Systems 3
4.1 Introduction

When we consider a general n task system, an analytical approach to determine the optimal initiation I
times for the tasks, by avoiding critical instants, in order to improve the utilization bound is extremely
complex. This is because of the dependance of the structure of the lower priority periods on higher
ones. Here we describe an algorithm to determine the initiation times for the task set, which results in I
a better utilization bound and hence a better safety i.argin. This algorithm favors tasks with a higher
priority ie., tasks with a lower period. In [5] the period transformation method is described, by which
the periods of the more important tasks is transformed to values smaller than periods of less important
tasks or vice versa. This makes the priority of the tasks equal to its criticality . This idea could be used I
to enhance the performance of our algorithm. We also describe a method to reduce the periods slightly
and obtain a better utilization bound. I

In [1], a stocastic analysis of the performance of the rate monotone algorithm is presented. A
task set is generated randomly and the computation times are multiplied by a small factor 6 and b is
systematically increased to a threshold value at which some task deadline is missed. The utilization
corresponding to this value of b is defined as the breakdown utilization. We evaluate the performance I
of our algorithms by determining the breakdown utilization of the task set whose initiation times are

determined or whose periods are changed by our algorithms, and comparing it with the breakdown
utilization obtained with the original specifications. It must be noted that at the point of breakdown
the system may not be fully utilized. It may still be possible to increase the computation times of some
of the tasks and still keep the system schedulable. However evaluating the system by determining the
breakdown utilization is a more realistic approach. I

I
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4.2 Determining Initiation Times

4.2.1 -An Algorithm to determine Initiation Times

The system consists of n periodic tasks rl, 12...rn with periods TI, T2, ...T,, and execution times C 1, C2 , ...Cn,
respectively. Without loss of generality it is assumed that T1 < T2 ..... < T, and also that T1 ,T2 ...T,
are all integers. The task with a smaller period has a greater priority and the tasks are scheduled by the
rate monotone scheduling algorithm. The criticallity of a task is assumed to be the same as the priority
given to the task.

The algorithm described below improves the safety margin of the system by initiating each task at a
specific time. The initiation time for each task ri is determined, taking into account all the tasks with
a higher pr;ority, because by the rate monotone scheduling algorithm the schedulability of a particular
task is affected only by tasks of higher priority. The optimal initiation time of a task ri maximizes the
available time for the execution of the task, assuming that the the tasks l, r2 ... r,- 1 are initiated at their
respective optimal initiation times. The algorithm fits tasks into the schedule one by one, starting with
the task with the highest priority and going down to the last task in the order of decreasing priority.

1. The greatest common divisor of T1 , T2 ..... T, and C 1,C2 ..... C. , is determined to be gcd.

2. The task 7- is initiated at t = 0.

3. Each subsequent task is initiated at times t > 0 to determine the optimal initiation time for the
task. We do not consider initiation times t < 0 due to symmetry.

4. The initiation time for task i is determined in step i.

5. si denotes the initiation time for task i and Si denotes the optimal initiation time for task i.

6. LCMi denotes the least common multiple of T1, T2,... .T,.

7. Ci_ denotes the maximum possible value of Ci for which the task rT remains sche'ulable, as-
suming rj, T 2 ... ri-.I are initiated at S1,S 2 ...Si- 1 respectively and r" at si.

8. bi-i denotes the smallest possible busy CPU block or free CPU block at the beginning of step i
when s1 is a multiple of bi-1.

Consider step i ie., tasks rl,T2 ...ri- 1 are initiated at Sj,S 2,...Si- 1 respectively and Si is being
determined. We do not consider Ci since Ci_,, is to be determined.

Consider the region t = s to t = LCMi +s, where s is the initiation time of ri. This can be divided
into k regions R1, R2...Rk, each of size Ti.

Free CPU blocks and busy CPU blocks (see Figure 3) are defined within each region R. where
x = 1,2 .... k. A free CPU block is a continuous region within a region R, where the CPU is idle.
A busy CPU block is a continuous region within a region R, where the CPU is busy.

In step 1, 61 = gcd and S, = 0. In each step i, i ranging from 2 to n,

1. 6b = i-11/2

2. si is varied from 0 in steps of bi upto the greatest common diviso- of Ti and LCMi- 1 . For each
si, Ci_., is determined. The value of si that maximizes Ci_ is the optimal value Si.

383



1
I
U

bCy C-bU block !11

fm CPU blok

Figure 3: Free a".1 Busy C'PU Blocks i

We do not concern ourself with the computational coliiplexity ,f this algorithil right now bcause 3
the rate monotone schedule is designed off-line. l

4.2.2 Effectiveness of the algorithm I
Our algorithm does not always determine optimal initiation times, llowe.er, we pre-sent here W,:me
observations about the structure of the periods of the task system, which sugg,,st that the ri-sutts

obtained using our algorithm will be close to optimal.

L. The region between t = s. (si, a multiple of 6b.- I) and t = LCM, can be divided into k regions 1?,r
x = 1,2, ..k each of size Ti. We define these regions to be k-rrgsons.

The differeý '1 between the time available for the execution of r,, in any two regions R,, is a

m ultiplec .- I, I

This is because any free of busy CPU block in any region R. is a multiple of 6,_ I

2. Starting from 0 or any multiple of 6i- , if we move the initiation time of T-, by any distance r lf,!ss
than or equal to 6i-,, then the change in available time for execution of 7, in any region either 1
1. increases exactly by x
2. decreases exactly by z
3. remains the same.
The only extreme cases to be considered ,re shown in Figure 4.

Over all the regions between si and LCM, + s,, the total gain in time for execution of 7, equals
total loss. 3

3. From the above two observations hence, maxima for the time available for the execution of r,, will
be obtained only at si values that are multiples of 6b = -6-"

In the extreme case, two regions RL. and Rj differ by bi- 1, the time available for the execution of r,
in Rk is x and in Rj is z + bi-,. Also z is the minimum time available for the execution of ;, over

3
I
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1all the regions RI, R 2-...R&. Now if the initiation time is moved by b,= - and time available for

the execution of ri in RI is z + 6, and Rj is z + 6, and this is a maximum. Hence if all values for s,
that are multiples of 6, are considered, a maximum value for the time available for the execution
time of r, will not be missed.

4.3 An Algorithm to determine the Periods

From the analysis of a ý.wo task system we determined that the utilization bound of the system improves
when the k value (k is LCIN of T, and T.2 divided by T-) is reduced, or in other words the greatest common
divisor of the periods is increased, especially when the value of f is close to O414 (f is T- - Our
algorithm for a general n task system is based on this idea.

We assume that it is allowable to reduce the periods of the tasks by a specified percentage (say z).I This is a reasonable assumptfon because if you consider a common real-time application such as data
sampling, a faster rate of sampling is often desirable.

The tasks in the set are rl, r 2 .... r,, with periods T7, T2 .... T, respectively with T1 < T2 < .. T<,.
"I The new periods are determined by an exhaustive search over the range Or * T, to T,, for each task i,

1< i <n.

I 1. r, and r2 are considered, and a combination of periods that gives the smallest k value is chosen.
Let them be TI and T2 respectively.3 2. The least common multiple of T, and T., is determined. Let it be LCM 2.

3. For 3 i< n,
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T7 is chosen so as to obtain the smallest k value or largest greatest comnma on divisor between 7"

and LCM.-I, where LCME is the least common multiple of 'T', ... 7' Also T' closer to T is I
favoured.

The new LCMI is determined.

4.4 Simulation and Results

Random task sets are generated with each task set having i) two tasks each ii) three tasks each iii) five 3
tasks each For each of the above, the average breakdown utilizations are determined over 50 task sets.

The task sets are generated by selecting relative periods and computation times uniformly distributed,
and then scaling the computation time to give a schedulable task set. The breakdown utilization is I
obtained by scaling the computation time systematically till it becomes unschedulble.

4.4.1 Improvements due to change in Task Initiation times i
The initiation times for the tasks are determined and a comparison of the breakdown utilization is made
with the task system that has all tasks initiated together. The results are tabulated in Table 1. I

number of tasks breakdown util breakdown util difference in number of tasks
in task set 0 init time with init time breakdown u that improve

Periods between 2 and 20
2 0.943173 0.951178 0.008005 38
3 0.913220 0.922900 0.009300 48

5 0.893316 0.909797 0.164810 50
Periods between 2 and 50

2________________________________ 0.948143 0.948 =415 0.00272 28
3 0.920709 0.922934 0.022250 38

Periods between 2 and 100 multiples of 5
2 0.944266 0.954509 0.0102430 N/A

3 f 0.914785 0.927008 0.012223 N/A
4 0,884467 0.904569 0.020102 N/A

Table 3
The results indicate the following trends 3
"* There is a definite improvement in the average breakdown utilization of the task sets when the

initiation times of the tasks is changed. This is because for each task the critical instant is avoided,
each of the k.regions is considered and the initiation time is so chosen as to maximize the minimum I
time available for the task. Hence each task has a little more computation time available and so
breakdown utilization increases.

"* As the number of tasks in the task set increases, the is an increase in the improvement of the
utilization bound. This is an interesting observation and it suggests that. as the size of the task

I
I
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set increases a lot more can be gained by shifting the initiation timnes. This is because the time
available for the execution of each task is maximised, each task gains a little and when the number
of-tasks increases the effect is cumulative.

o We also observe that the extent of the improvement is very small (an average of .5 percent).
However these are average values and if individual task sets are considered, the actual improvemnt
in breakdown utilization could go up to 6 to 8 percent.

* The above results also indicate that unschedulable task sets can be made schedulable and Table 2
has some examples.

task period computation tasks initiated together tasks initiated at specific times
priority time max comp time init time max comp time

Two task system
1 100 45 100 0.0 100.0
2 250 120 115 22.5 137.5

unschedulable

Three task system
1 120 30 120 0.0 120.0
2 150 65 '" 90 15.0 105,0
3 200 30 25 112.5 57.5

unschedulable

Five task system
1 100 20 100 0.0 100.0
2 150 45 110 10.0 120.0
3 350 50 150 162.5 150.0
4 400 110 100 45.0 122.5

unschedulable
5 720 20 115.0 27.5

Table 2

The only change that would have to be made is in the initiation time of the tasks. Therefore there
is no change in the actual utilization of the task set. However we see an improvement in the breakdown
utilization and hence an improvement in the safety margin of the system, at practically no cost.

4.4.2 Improvements due to change in Task Periods and Initiation Times

As the range of the periods decreases the improvement in average breakdown utilization obtained by
shifting the initiation time increases. Refer 4.4.1.

Also if the periods are harmonic, which is the case in a lot of real-time applications, then the
improvement in the breakdown utilization is better. Refer 4.4.1.

The periods of the tasks are changed slightly (allowed a reduction up to 10 percent) and then the
initiation times are determined. The breakdown utilization is determined and the results are compared
with 1. The original system 2. The system with change in periods only, with all tasks initiated together.
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The results are tabulated in Table 3.

number of tasks actual util breakdown util safety margin inprovement in

in task set I I safety miargin
_ _ All tasks initiated together _

2 0.699809 0.940779 0.240970
3 0.699616 0.912586 0.212926
5 0.699276 0.1871999 0.172723

Periods changed and all tasks initiated together _

2 0.727403 1 0.953687 0.229657 -0.011313
3 j 0.732088 0.930850 1 0.198762 J -0,014164
5 0.737715 0.888321 t .150606 -0.022017.....

Periods changed and tasks initiated at specific times
2 0.727403 0.978309 0.259060 0. 180900
3 0.732088 0.953566 . 0.221478 0.0085525 0.737715 0.931120 0.193406 ... 0.020737 B

Table 3

The results indicate that

" There is a substantial improvement in the breakdown utilization of the task set. Since task periods 3
are reduced, there is also an increase in the actual utilization of the system, however, this is
less than the improvement obtained in the breakdown utilization and hence there is an overall
improvement of about 1 percent in the safety margin. For an n task system a utilization bound
of 1 can be obtained by making the period of the n'h task a multiple of all other task periods (3]. I
This means a k value of 1. For each task we maximize the bound by decreasing the k value and
providing additional gain by changing initiation times. U

" We also observe that if the periods alone are changed, and the tasks all initiated together there is
a small improvement in the breakdown utilization but because of the increase in actual utilization
there is a decrease in the safety margin. 3

" It should be noted here also that these are average values and if specific task sets are considered
the improvements in safety margin are more substantial.

Thus an improvement in the safety margin of the overall system at no run-time cost. In fact there
may also be improvement in application performance if the periods of sampling, monitoring etc., are
reduced. 3
5 Conclusion 3
We have presented some enhancements to the rate monotone algorithm which exploit application char-
acteristics to avoid worst case situations and improve the safety margin of critical real-time systems

Iwithout run-time penalty.

I
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We have determined the optimal initiation times for a 2-task system using the rate monotonic schedul-
ing algorithm, and the resulting increase in the utilization bound. It is only possible to improve the
bound in some cases, however sometimes significant improvements may be obtained. In addition, the
extent of improvement in the bound depends on the relationship of the periods of the two tasks. Con-
trary to intuition, sometimes reducing task periods may sometimes substantially increase the bound,
and transform a previously infeasible task set into a feasible one. By changing the periods and using the
optimal initiation times an increase in the safety margin is also obtained.

The techniques used for the two-task case, which involve analyzing the structure of task arrival pat-
terns, and determining the relationship between periods, increase quickly in complexity as the number of
tasks increases. So algorithms were designed for determining initiation times and periods, and improve-
ments in safety margin were obtained. Also as the size of the task set increases the gains due to modified
initiation times increases. Reducing periods also sometimes produces a gain in the safety margin.

Results are sufficiently promising so that a system designer may wish to put in the effort to select
the best initiation times and task periods, to enhance the schedulability and safety of the system.
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Abstract

This paper presents a novel strategy for scheduling tasks in a distributed real-time system. The system
is composed of several processors that communicate via dedicated links. Tasks in the system are either
periodic or aperiodic. The schedule for each processor of the system must be constructed dynamically
as aperiodic tasks arrive at unpredictable times. Each processor of the distributed system is capable

of executing any of the aperiodic tasks, while the periodic tasks are executed locally. The scheduling
strategy is divided into two components, a local scheduling strategy responsible for timely execution of
tasks arriving at a processor and a global strategy responsible for the selection and stochastic transfer

of those tasks that cannot be executed locally. The global scheduler uses a stochastic and learning
algorithm to reduce the number of late tasks. The simulations identify the circumstances in which
stochastic scheduling is superior to deterministic scheduling.

I Introduction

Real-time systems are defined as those systems in which the correctness of the system depends not only on
the logical result of computation, but also on the time at which the results are produced. These systems

can be characterized by presence of tasks that have timing requirements, such as deadlines. Examples

of real-time systems include, process control systems, aircraft flight control systems, nuclear power plant
safety systems and air traffic control systems. Such systems must perform certain actions in a timely
manner and their failure to do so may result in sever consequences. A number of such systems, such as

nuclear power plant control systems and local area networks controlling the operation of an aircraft carrier.
are composed of processes that are inherently distributed, suggesting the possibility of using a distributed

system for their implementation. The number of practical systems implemented as distributed systems

has, however, been limited by the difficulty of scheduling real-time tasks in a distributed system.

The scheduling of real-time tasks for a distributed system has received considerable attention in recent
years (see [1] for a survey). Most of the proposed strategies are, however, aimed at environments where tasks

are fully characterized in advance and are suitable only for applications that operate in a static environment.

"Partially supported by National Science Foundation grant number: NCR-9016361
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In contrast, a dynamic scheduling strategies allows the system to handle tasks that are unexpected and

occur at unpredictable times (6, 8, 9]. This additional flexibility increases the system's ability to adapt to

external events and permits for exception handling, but also reduces system's predictability. A possible

compromise is to guarantee timely execution of periodic tasks known at system initialization time and

then apply a dynamic scheduling strategy to tasks that arise at unpredictable times. This compromiso, I
incorporates the flexibility of a dynamic scheduling strategy and the predictability of a static scheduling

strategy. The stochastic-learning scheduling strategy uses such a compromise in a loosely coupled network.

The stochastic-learning scheduler uses a two-level scheduling strategy for scheduling of real-time tasks

in a distributed system. A real-time task that enters the system through a given processor is first processed

by the local scheduler at that processor. If the local scheduler cannot meet the timing requirements of a 3
task the global scheduling algorithm selects another processor of the distributed system and transfers the

task to that processor for remote execution. The local scheduler of the remote processor attempts to fit

this remote task into its existing schedule so that its timing requirements are met. The global scheduler

sends and receives information about its past decisions and uses this information to make better decisions

in the future. i

Real-time systems are often used to control critical applications but may experience brief periods

during which some processors of the system are overloaded. The real-time control system must minimize

the number of tasks that miss their timing requirements during overload situations. While a simple local

scheduling strategy is sufficient for scheduling of tasks in non-overload situations, a global scheduling

strategy is required to handle situations where the demand on some processors of the distributed system is

higher than their capacity. Under such circumstances, the real-time system should continue to execute tasks

that satisfy their timing requirements and should minimize the number of tasks that miss their deadlines.

This paper uses a stochastic-learning scheduling algorithm to reduce the number of tasks that miss their

deadlines. While many metrics are important in evaluating a real-time system, the most important measure

for such an evaluation is the proportion of tasks that miss their timing requirements. This paper evaluates 3
the stochastic-learning scheduling algorithm with respect to this metric and compares its performance with

several other algorithms.

The rest of this paper is organized as follows. Section 2 describes the model of the distributed ,ystem

and the tasks in the system. This section also outlines the overall structure of the scheduler. Section 3 is

a description of the local and global scheduling strategies and of the optimal guarantee procedure. In this 3
section data structures used by the local and global schedulers are also described. Section 4 summarizes the

simulation results identifying circumstances under which the stochastic-learning global scheduling strategy

is superior to other global scheduling strategies. Some concluding remarks and directions for future research I
in this area end the paper in Section 5.

II System Description

The system under consideration is a distributed real-time system composed of several homogeneous pro-

cessors that communicate by exchanging messages on unidirectional dedicated links. Both processors and 1
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links are assumed to be fault free and any processor of the distributed system can execute any of th1,

aperiodic real-time tasks. Furthermore. the local clocks of all processors in the system are assumed To be

synchronized and only real-time tasks are assumed to be present in the system. A real-time ta-sk V ,

as a task that must complete its execution prior to its assigned deadline.

IH-A Task Model

There are two types of real-time tasks in the system, periodic and aperiodic. A periodic task consists of

a computation that is executed repeatedly, once in each fixed period of time. An example of a periodiC

task is reading of a sensor or generating a control output. An aperiodic task consists of a computation

that responds to internal or external events. This type of task occurs in the system just once and at

unpredictable times. Typical usage of such tasks includes responding to operator requests and exception

handling. Since the periodic tasks are known in advance they can be guaranteed timely execution on their

local processor. The aperiodic tasks. on the other hand, are not known a priori and therefore. may or

may not be guaranteed timely execution in the processor in which they originate. It may be necessary to

execute some of these tasks at a different processor to meet their timing requirements.

A periodic task, T", is characterized by a pair: {Ci, Pi}, representing its computation time and its period.

respectively. A periodic task must be executed exactly once during each period. It is not important when

the task is executed during its period. In a real-time system there are a number of such tasks each having

its own period. The deadline of the jth instance of a periodic task, Ti can be calculated by j x Pi. This

value also represents the time at which the j + 1st instance of the periodic task, Ti is ready to be executed.

An aperiodic task, Tk, arrives into the system at unpredictable times and is characterized upon its arrival

by its deadlines, Dk and its computation time, Ck. Such a task can be scheduled for execution any time

after its arrival. Both periodic and aperiodic tasks are assumed to be preemptable. It is also assumed

that the set of periodic tasks, their characteristics and their assignment to various processors of the system

is known at the system initialization time. The characteristics of an aperiodic task becomes known only

when it arrives at a processor. Furthermore, each processor has sufficient processing power to guarantee

timely execution of the periodic tasks assigned to that processor. This assumption is enforced by the local

scheduler of each processor which during the initialization phase, checks that the set of periodic tasks is

schedulable. The following lemma establishes the necessary and sufficient conditions for schedulability [7]

of a set of preemptable periodic tasks. It states that a set of preemptable periodic tasks is schedulable as

long as the processor is not overloaded.

Lemma 1 Let rp = {T1,T 2 ... T,)} be a set of preemptable periodic tasks. 7p is schedulable if and only if:

nci

No assumptions are made regarding the arrival rate, the minimum inter-arrival time, the compulation tim"

or the deadline of an aperiodic task. lhowever, the simulation model implies that tasks are imdop'ode,
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and there are no precedence constraint among them. Moreover, it is assumed that the only resource shared

between the tasks is processing time. 3
The characteristics of tasks that are guaranteed for execution on a processor are kept in the Node

Task Table (NTT), which contains the deadline, remaining computation time, earliest start time and the

identification number of each guaranteed task. The characteristics of the periodic tasks is kept in the 1
processor's Periodic Task Table (PTT). The PTT is used to extend the NTT whenever necessary. I
II-B Overall Structure of the Scheduler

The scheduling strategy considered for this study consists of two components, a local scheduler and a U
gflobal scheduler. A central idea used in both components is the notion of a guaranteed task. A task is

said to be guaranteed by a processor of the distributed system if the task runs to completion prior to its 3
deadline on that processor and does not cause any of the previously guaranteed tasks to miss their timing

requirements. The local scheduler attempts to guarantee the timely execution of a task by executing it

locally. The global scheduler attempts to guarantee the timely execution of a task by executing that task

on a remote processor. Periodic tasks are guaranteed to meet their timing requirements and are executed

locally. Aperiodic tasks that arrive into the system wait until they are processed by the local scheduler. 3
The local scheduler attempts to guarantee aperiodic tasks by examining its current load. When a task

cannot be guaranteed, that task is reconsidered by the global scheduler which probabilistically selects

another processor for the task and forwards the task to that processor.

Once the global scheduler has sent a task to a remote processor, the local scheduler at that processor

must determine if the task can be executed in a timely fashion. Tasks that arrive as a result of a global I
scheduling decision are treated as if they were newly arrived tasks except that they are labeled as rcmolc

tasks. If a remote task cannot be guaranteed to meet its timing requirements then that task is discarded 3
and removed from the system. The decision to discard such a task is based on the observation that the

processor deemed best capable of guaranteeing its timely execution was unable to do so. Furthermore, some

time has been spent transferring the task to the remote processor. Therefore, the probability that some 3
other processor is able to guarantee the timely execution of this task is quite small. Sending unguaranteed

tasks to a second remote processor generates more traffic in the system and increases the length of the 3
communication queues. Moreover, sending tasks to a second remote processor decreases the available

processing time by increasing the processing required for scheduling message handling and system tasks

without corresponding benefits. Simulation results have shown that sending tasks to a second remote I
processor reduces the system's performance and, therefore, this idea was not investigated further. !
III The Scheduling Strategy

The scheduling of real-time tasks in a distributed system can be viewed as a two-level scheduling activitY.

.. t the lower level the local scheduler at each processor attempts to guarantee the tinmly execution of 3
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a real-time task by calling the guarantee procedure. The guarantee procedure considers the processor's

current workload and the future instances of all periodic tasks to determine whether the processor has

sufficient processing power to guarantee the timely execution of the task under consideration. At the

higher level the global scheduler is responsible for finding the most likely processor that can guarantee the

timely execution of a locally unguaranteed task.

III-A Local Scheduler

The local scheduler itself is implemented as a periodic task. To reduce the number of tasks that miss their

deadlines, the local scheduler is also invoked upon arrival of a new task if doing so will not cause any of

the previously guaranteed tasks to miss their deadlines. When the local scheduler is invoked it considers in

order each of the tasks that have arrived at the processor since its last invocation. The local scheduler calls

the guarantee procedure once for each task to determine whether that task can be guaranteed locally. If a

task is not guaranteed locally then that task is handled by the global scheduler. Once a task is guaranteed

for execution on a processor its computation time, its deadline, its earlie.t start time and its identification

number are entered into the appropriate row of NTT.

The local scheduler uses the earliest-deadline-first algorithm to schedule tasks [3]. A task with ain

earlier deadline will be scheduled to run before a task with a later deadline if both tasks are ready to be

executed. This algorithm has been shown to be optimal [2] for a single processor and will find a feasible

schedule if one exists. A schedule is considered feasible if all real-time tasks are able to meet their timing

requirements.

The NTT is implemented as two ordered lists. The first list is a ready list which contains all the tasks

that are ready to be executed. Tasks on the ready list have start times that are smaller than or equal to

the current time and are ordered in the order of increasing deadlines. The second list is a waiting list of

periodic tasks that are not yet ready to be executed, but are guaranteed timely execution. Future instances

of periodic tasks must be considered by the guarantee procedure when it guarantees an aperiodic task.

Tasks on this second list are ordered in the order of increasing start times. A task that moves from this

list into the ready list is inserted into the ready list according to its deadline. Upon completion of the

currently executing task that task is removed from the NTT and the dispatcher in the processor is invoked

to select the top item on the ready list for execution.

All non-system tasks are assumed to be preemptable. System tasks, such as the local scheduler or

the global scheduler, are considered to be more critical and hence, are not preemptable. When a task is

preempted that task will be placed back on the ready list according to its deadline and its computation time

is updated to reflect the processing time it has received so far. Preemptions can be planned or unplanned.

A planned preemption is the result of a periodic task with an earlier deadline than the currently executing

task entering the ready list. Such preemptions cannot cause any of the guaranteed tasks-to miss their

deadlines since they are accounted for by the local scheduler. Unplanned preemptions may occur as a

result of a task or a message entering a processor. Such preemptions are allowed if and only if they will not
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cause any of the previously guaranteed tasks to violate their timing requirements. Trnplanned preemptions

can only invoke a system task, whose characteristics are, of course, known in advance. I

III-B The Guarantee Procedure

The guarantee procedure developed for this study is an optimal procedure in the sense that it will guarantee

a task if and only if that task will not cause any of the previously guaranteed tasks to miss their dea-dlines

and if there is sufficient time left to satisfy the timing requirement of this task. This procedure is called

by the local scheduler once for each aperiodic task that arrives at a processor of the distributed system.

The guarantee procedure decides whether each task can be guaranteed to receive enough processing time 3
to complete its execution prior to its assigned deadlines.

The guarantee procedure operates by placing a task temporarily in the NTT and checking that all 3
previously guaranteed tasks still meet their deadlines. Furthermore, since the periodic tasks are guaranteed

to complete prior to their deadlines, it may be necessary to consider periodic tasks that are not yet ready

to execute. The guarantee procedure achieves this by extending its current window of scheduling. The

time interval from the earliest start time to the latest deadline of all the tasks in the NTT is defined as

the current window of scheduling. The current window of scheduling can be extended by either the local 3
scheduler or by arrival of an aperiodic task with a deadline later than the latest deadline of all tasks in

the NTT. In both cases the current window of scheduling is extended by an integral multiple of the least 3
common multiple of the periods of all the periodic tasks in the PTT.

The local scheduler may decide to extend the window of scheduling because the time is close to the 3
start time of the next instance of a periodic task and that task is not in the NTT. The local scheduler

will then extend the current window of scheduling by appending periodic tasks to the NTT. If the current

window of scheduling is extended by the arrival of an aperiodic task, then deadline of the aperiodic task I
must fall within the newly extended window of scheduling, ensuring that all periodic tasks possibly affected

by the arrival of this aperiodic task are accounted for. 3
After the NTT is extended to account for all periodic tasks that may be affected by the aperiodic task

under consideration, we must consider whether the aperiodic task can also be guaranteed. The necessary I
and sufficient condition for schedulability for a set of preemptable tasks is established in the following

lemma. 3
Lemma 2 Let r, = {T 1 ,T 2 ,...,Tl} be a set of preemptable tasks, where T, = (Ci,SiDi). C, is the

computation time, Si the earliest start time and Di the deadline of Ti. Let rp be sorted in non-decreasing

order of start times (i.e. for any pair of tasks Ti and Tj if i > j, then Si ! S.3 ). rp is schedulable if and

only if: 3
Vi Vj (Z Ck-) !5 Dj - Si.

k=i 3
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The lemma requires that for each task in the set r;, the guarantee procedure ensures that there is

sufficient time to process the task and all guaranteed tasks that are in r. and start later. To implement

this scheduling condition requires time proportional to n 2 where n is the number of the tasks in the NTT.

"This implementation would be too costly in a dynamic real-time system. However, an incremental version

of the above schedulability condition can be implemented in time proportional to n. This incremental

version relies on two observations. First, the start time of the task under consideration is equal to the

current time because only aperiodic tasks can cause a call to the guarantee procedure. Second, it is

possible to construct a feasible schedule for a set of periodic tasks that are not yet ready to execute. This

observation is based on a schedulability test that is performed during the system initialiation phase for

a set of preemptable periodic tasks. These observations can be incorporated to change the schedulabilitv

condition for a set of preemptable tasks where the schedule is constructed incrementally by including one

additional task at a time.

Lc-imna 3 Let rp = {T 1 ,T 2 ,... T} be a set of preemptable tasks, where T. = (CL,Sj,D,). C, is the
computation time, Si the earliest start time and Di the deadline of Ti. Let rT be sorted in non-decreasing

.rder of start times and let rp be schedulable according to lemma 2. Then rp U To is schedulable if and only

if:

Vj (Z Ck) <_ Di - So.
k=O

This lemma states that a task can be added to a set of previously guaranteed tasks given that there is

enough processing time to guarantee the timely execution of this task and all the guaranteed tasks in the

set. Since the tasks are preemptable, there might be several tasks with start times equal to the current

time. In such cases we assume that the task being considered by the guarantee procedure precedes all other

tasks %kith start times equal to the current time. The costs of preemption and running the dispatcher are

ignored in this study, however, these costs can be considered as part of the task's computation time. Note

that tho incremental version of the guarantee procedure is valid only for task sets where the task that is

being considered has start tTme equal to the present time and the only tasks that have start times in the

future are periodic tasks that satisfy the schedu'-bility condition of lemma 1.

III-C Stochastic-Learning Global Scheduling Strategy

The stochastic-learning strategy is based on a real-time extension of the stochastic-learning automata

[4. 5, 8]. The stochastic-learning global scheduler at each processor ol the distributed system keeps a

variable L that is proportional to the load on that processor. L is defined as the fraction of the busy time

to the total time in the r :rent windov.- of scheduling. This information is broadcast periodically as part

of an update inessage which also contains the identification of the source of the message. The period of

the update messages is a tunable system parameter. Using the update information received from other

procssors and the value of its own variable L, the global scheduler at each processor can calculate thle
syAtem s average load. It is then able to label each processor as underloaded or overloadcd. This assi-gnment
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Figure 1: The operation of local and stochastic-learning global scheduling strategy for a processor o•f the

distributed system.

of underloaded and overloaded to each processor constitutes the state of the system as observed by each I

global scheduler. Different processors of the system may observe different states of the system due t, thP
different delays inher St in the communication medium. L

The p~robability vectors for each possible state of the system are combined to form a probability matrix
P, the rows of which correspond to the observed state of the system. An element of the probability matrix.

Poj at processor k, represents the probability that processor k will send an unguaranteed task to processor

j should processor k find the system in state i. The diagonal elements are set to zero to prevent a processor
form sending an unguaranteed task to itself. Furthermore, the probability of sending a task to a processor 3
that is overloaded is set to zero. Initially unguaranteed tasks are sent to underloaded processors with equal

probabilities. i

The learning occurs as the result of processors guaranteeing or rejecting remote tasks. Let us assume
thaot processor i's estimate of the state of the systdm is S and that it has sent a task to processor j. If *

the task is not guaranteed, the acion of sending an unguaranteed task to processor j, given processor s
estimate of the state of the system, was an incorrect action. Therefore, the probability of i sending another

task to j should be reduced when i finds the system in the same state, S. If the task was guaranteed by I
j. the probability of sending a task to processor j should be increased when i finds the system in state .

T lor both cases the row of P in processor i that is updated must correspond to the observed system staum.

". Note that the source processor i sends its current observed state of the system, i.e. S, along with .Ie
ask ard processor j sends a message to inform processor i whether the task was guarant e ed or rej•ec! I
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If the task was rejected then the elements of the effective row e. ro.w . are U.,pd 1 ed 1, ,,,

penalty function:

IP,(Y + 1) = 1m(1) I,,jro

If the task was guaranteed then the elements of the effective row. i~e. S. are uepd,•ad I6%
S rracardl function:

1P m ,( n + I) = X.r ) - h . : ! 'n ,(U ) O • -J

I (M ,+ ) n' +I) + K, P ,,(

-- m # 3

IIn the above equations n refers to th. current value of the elements of thw proi,.ibilitv 1tH-. a::,!

to the next instance of them. Note that the above computation is performed periodiuiily as za!:!

global scheduler and that both AK and It', are tunable parameters.

3 Figure 1 is a pictorial representation of the local and global schedulers tht r.side at ch

the distributed system. Each processor periodically, witl period r, cliecks and updatez, ,i 1,,, ; ,1

and broadcasts it to all other processors in tie svstem. Using this informat"in. 'Ii pro ceý,,r.

the state of the system at this time. Once the local scheduler finds a task that it cao r . .

it sends that task to a remote processor using the row of the probability matrix that ,,rrvsp, M

current observed state of the system. Upon the arrival of the remote task at the de tination pr,,ic>>

the local scheduler of this processor attempts to guarantee the task. Rejected tasks are rerinnd I:,,m3 system and guaranteed tasks are entered into the NTT. The indication of the guaranIte, or r,

sent back to the source processor and that processor updates the probability %ec tor corrsl, nii:, t, ,

observed state of the system at the time of the initial transmission.

IV Simulation Model and Results

T' simulation model, programmed in C, consists of a network of five homogeneous processors c0N re,,d ed

as shown in Figure 2. There are five independent sources for arrivals of aperiodic tasks. Each ý,irce, ;I

"modeled by a Poisson distribution with averages A, . ... A5. The A's vary depending on th, particular lt;,,

being modeled. Specific values of A's correspond to average loads which are presente(i with th, sinw;oi,:I results later on in this section. When a task arrives at a processor from the external world, it is asicn•,d

size according to a Poisson distribution. The average size of the tasks is another parameter that vane- i

the particular load being considered. If a task cannot be guaranteed by the processor at whicli it ;irri.,-

from the external world, that task may be transferred to another processor of the network [lThe, dlhiverx

of tasks and other messages, such as updates. take a time that depends on two factors. lhi ,uerleinrt rdl\

and thit transmission delay. Whuile the queucing delay depends on the behavior of each p(jcs',r rl,

syvsltei the transmission delay is a physical property of the network and is a gloibal viarl,, ( ,

reflect realistic situations in current networks. The qtieiieing delay is determined bY Ii' •, ti t ,
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Figure "2 Network "[opulog) I
In a real-time system one of the most important parameters to consider is the larzty of tasks. I he, . 3
a task, T,, is defined by: LAN, = D, - C', - R, where D,,C,. R, refer to the task's deadline. couM'tdlio:l

time, and ready time respectively. The laxity of all periodic tasks iII the system is k nown in ad : :,

"The laxity of the aperiodic tasks is modeled as a Poisson distribution and is a systemr variable. I ,i,

simulations some of the processors of the distributed systern are overloaded and others are nit. Il rnol,

the cases however, is the system as a %Nhole overloaded.

To evaluate the performance of the stochastic-learning scheduling strategy, two deterministic( and lhr,-,

baseline global scheduling strategies are also implemented. The first deterministic strategy is a ceril.', 3
strategy where one processor is responsible for making decisions about relocating tasks that canriot l

guaranteed locally. The second deterministic strategy is a cooperative and distributed stratg. in wM,,II

a set of processors solicit and submit bids to acquire those tasks that cannot be guaranteed loi ally I I
baseline algorithms consist of an optimal global scheduling strategy, a non-cooperative strategy in wvi i

tasks must be executed locally and a random global scheduling strategy. All globa.l scheduling strait,-g, 3
use the local scheduler described in the previous section for local scheduling.

In the centralized global scheduling strategy a central processor is responsible for making gl'obal Ich,,, n. 3
itg decisions. A task that cannot be guaranteed by the local scheduler is attached to a queue of locail4

unguaranteed tasks. The global scheduler at each non-central processor is responsible for dequeuing ,

these tasks. The central scheduler is a periodic task itself, bitt to decrease the number of late tasks it ma.l.
also be invoked dynamically. The centralized global scheduling strategy is a three phase protocol. Ili Il,

first phase of the protocol the global schedulers at non-central processors of the system inform the glnb; 3!
scheduler at the central processor of the system of the locally unguaranteed tasks. Ili the seEori pb .

the central scheduler tries to find a suitable sink processor for each of the locally unguaranteed tasks. if

suitable sink processor is found its identity is sent to the source processor of that unguaranteed task. Th,' l

third phase of the protocol starts when the source processor receives this message. The global sZhedul,;

on this processor labels the task remote and sends it to the designated sink processoi. Ott, th, ar3val (0

this remote task at the selected sink processor, if this task is guaranteed by the local schedti•lr. iti

inforniation is inserted into the appropriate row of the NT of the sink proceýssor awd th, schbd a, i i,
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central processor is informed. If this task is not guaranteed by the local scheduler, it is removed from the-

system and there is no need to inform the global scheduler at the central processor since the NIT 0, tl•:!

processor remains unchanged. The centralized global schedulingg strategy uses processor 2 as tlh cvnt.o :

processor in the network of Figure 2. Note that this is the best possible location for the central prACI-"

as only one processor is not its immediate neighbor.

The cooperative strategy is an implementation of the bidding strategy introduced by Ramainnrit tu:a

and Stankovic [6. 9], A new task that arrives into the system is considered first by the local •chedubv

If that task is not guaranteed by the local scheduler, it is attached to a queue of unguaranteet(,d ta'4.

The global scheduler is itself a periodic task but, it may also be invoked dynamnically. The cooprat

global scheduler also has three phases. During the first pl'.ise the global scheduler at the source pr-cevs::o

generates and broadcasts a Request For Bids (RFB) mussage. In the second phase the global schedul,.!.>

of other processors of the systern receive the RFB message and may generate and send a bid to the soutlr(c

processor. In the third phase, the global scheduler at the source processor evaluates the bids arid awards

the task to the highest bidder. Once a remote task has been received by the sink processor. the lcJ

scheduler of the sink processor runs the guarantee procedure for this newly arrived remote task- If the taA.r

is guaranteed by the local scheduler the task is placed in the appropriate row of the NTT. If a reiott, tda.h
cannot be guaranteed by the local scheduler, it is rejected and removed fror the system.

The first baseline strategy is an optimal strategy which assumes tasks can be processed at romote pro

cessors with zero communication and transmission d&lays. This strategy effectively replaces a homogeneous

distributed system of N processors with a single processor which is N times faster than a processor of thke

distributed system.The second baseline strategy is a non-cooperative strategy. In this strategy ta.sks that

cannot be guaranteed for local execution are rejected and removed from the system. The last baseline

strategy implemented is a random global schieduling strategy which sends locally ungiaranteed tasks •o

another processor selected at random from the distributed system. While(. the optimal global scheduling;

strategy defines the upper bound on the number of tasks that can be guaranteed in the system, the randor.m

and non-cooperative strategies define the lower bounds for the number of tasks that, should be guaranteed

by a global scheduling strategy.

A number of different metrics are measured in this study. The result reported,however, is only with

respect to one metric, the percentage of the tasks that complete their execution prior to their assigned

deadline. Since all periodic tasks are guaranteed to meet their timing requirements by the local scheduler.

only the results for aperiodic tasks are considered. Each global scheduling strategy has a number of nunab.',

parameters. All such parameters are optimiz,-d with respect to the normal operation of the networik

where none of the processors of the distributed system are highly overloaded. Once these parameters a,-

optimized, their value is not changed.

Figure 3 shows the proportion of tasks guaranteed as a function of the average load of the system when

the queuing &lays are taken into account. Figure 4 shows the results in an unrealistic model in which

queuing delays are ignored. As can be seen from these two figures, the queuing delay has a substantial effoci

on the guarantee ratio and the communication medium is a significant part of the network that crnau
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be ignored in the design of distributed real-time scheduling algorithim-. F- irrthermore., liguri, 3 •,, ,
the performance of the stochastic-learning strategy is superior to that of othwr ,dvo!itlwin f:. ,

to heavy loads. This p. oinomena is not observed in the unrealii-tic model of 1 i11.ure . otv,% :. .,I0
importance of communication medium and its real-time impacts.

In Figure 3 also note that the centralized scheme does not compare favorably W it hr I, I "It T

or the stochastic strategies. The stochastic scheduling strategy requires no mssag,- to , , ,

tasks. This reduces the delay in receipt of a task thereby increasing the proiabilit\ of g uaria, ..nve.

tasks. Both the centralized and the cooperative strategies require two mnessages before t. ,'. , .
task to a remote processor. The cooperative scheme has, however. more up-tto-date 1i1nf, 1"t t!.,! :1 .1,.

the average achieves better results. Furthermore, the central processor of the sy-teim mi- ino , . 3
congested, causing delay to request and update messages.

The stochastic-learning strategy lacks the up-to.date information of the cooperative strategy. I: eao i3
locally unguaranteed task, however, the cooperative strategy sends two messages whereas the sthastir

learning strategy sends only one. This increases the traffic of the network. Furthermore, the is;, ,t '

by the stochastic scheduler is sent after the remote task has arrive-d at its destination Thio ,
scheduler requires two messages befort it can send a task to a remote processor. The vffect of Ow,,.

factors is more pronounced for networks that have higher transmission delays or systens Nh. rhv ', .z 1i

laxity of real-time tasks are smaller. Figure .5 shows the proportion of tasks guarantteed a*- d
of the average load of the system when the transmission delay is increased to 10 millisccond' per !n;,•

per hop. Each packet is 1000 bits long and the mean task size is 16000 bits. Comparing figur,es 7 ,)* 1 ;
shows that as transmission delay increases stochastic-learning scheduling strategy becomes more at' i I:I :t,
compared with other strategies. Similar results can be deduced by comparing figures 6 and 3. Once ac.: 3
the stochastic-learning strategy is found superior to all other global scheduling stratogies as m ea C..,
of tasks is reduced from 1450 milliseconds to 500 milliseconds. Similar results are fo'nd when t0,, -!.

tasks or the average load of the network are increased.

The results suggest some general conclusions about the efectiveness of stochastic and coolr;ý,• f,

scheduling strategies. The stochastic scheduling strategy performs better than the cooperative ý" .ig\ I
when the transmission delays are longer, the system is more heavily loaded, the laxity of tasks arc, sm~dill
or the task sizes are larger. Thus, the stochastic scheduling is more suitable for difficult systems an'd it

can be used in new applications where traditional deterministic schemes are not successful. On tlh,, ol(er

hand, the deterministic strategy is more suitable for easy systems that are not heavily loaded, task>. !!i,

more laxity, job sizes are smaller or transmission delays are not significant. It is important ".,, 01ote4 1

there are situations where no global scheduling strategy performs well. For example if the size of tda:,.h

too large, the communication delay will be too great rega,: ,ss of the scheduling algorithm t,,ictod It
also interesting to note that there are situations where any Jgorithm would be adequate. The•' inMcuu",

the trivial cases when none of the processors of the distributed system are ovorloadl and l •, a .....

transmission delays are exceedingly small.

4
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V Conclusions and Future Research

This paper presents a novel dynamic schled ulliag strategy for real- timet d i ribu 1-d tu~

of scheduling real-time tasks in a distributedI system is decomiposed linto tiwo. r Iimed obri n-I

local scheduler attempts to guarantee the timiely execution of real- time task., by coitidviling t It' kun

on a single processor. Second, tasks that cannot be guaranteed locally are sent to another proc( :'-or (,

distributed systemi that has a high probability of executing remnote tasks in time. The stochasti(

lIcrnis the best possible action for each state of the network. Periodic mnessages are broadcast and o

to determine the state of the network. The stochastic-learnting scheduling strategy is compared Ni It

other global scheduling strategies. The simulation results demonstrate that stochastic-It-arning'tiito

is superior to deterministic strategies in many realistic situations anid the%, also indicate that tca:

strategies extend the domain of real-time distributed controllers by successful scheduling, tatsks In dth,1i t

situations. In the future this research will consider heterogeneous niet-works and precedence and uua

exclusion relations amnong the real-time tasks.
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1. MIM: Conceptual decomposition

When a mathematical model is translated to a detailed structural
model for implementation, often the communication consideration
outweighs the computational considerations. Such a structural model is
referred to as the Massively Interconnected Models (MIM). Numerous
examples exist in the areas of parallel computation, distributed computer
communication networks, and artificial neural networks. The beam
forming problem in acoustic array processing is one kind of Massively
Interconnected Model, which challenges the designers who hope to exploit
parallel processing technology of the future.

Beam Forming is a spatial filtering problem. Signals are coming in
from multiple acoustic sensors numbered in thousands that are placed
over a spatially limited area (2D). These signals are processed and
enhanced coherently so that directivity of the arrival beam can be
discriminated in both the azimuth and elevation directions. These signals
',ill be transformed and manipulated in a mathematical model that
requires MIM for implementation. The beam forming problem is selected
here to demonstrate a procedu-e necessary to describe typical MIM
problems. It is used also to develop characterization that can
differentiate among available architectures which can fit the MIM
implementation.

In this paper, the beam forming problem is first considered in a
mathematical model. At this stage mathematical abstract formular and
notations are used to describe the algorithm. Later, to implement this
algorithm a practical architecture was selected to accommodate the
processing. The architectures may be VLSI chips, bit-slice micro-
programmable processor, multiple processor systems using DSP chips or
Floating Point Unit hardware (FPU), SIMD machines such as CM-2, cr MIMD
machine such as Hypercube or iWarp. Modeling using MIM is an -
intermediate step in which alternative partition of the algorithm is
studied. Vital issues in this step is the occurring resource allocation and
scheduling when MIM modules are fitted to the architectures.
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Figure 1. Design procedures of a beam former.

Therefore, MIM modules are not considered as direct hard%----
architectural components but as a conceptual partition of the algorithm.
This decomposition into MIM modules results in resource allocation and
scheduling problems.

Since the objective is to implement a signal processing algorithm
(Beam forming) in hardware following a most economical way that
includes the whole life cycle cost (hardware/software design cost and
maintainability costs), it is necessary to develop measures that can help
to answer the following questions:

1. What are the capacity requirements in the DSP algorithm?
2. Among all the architectures, such as VLSI, bit-slice, DSP chips,

SIMD machines, and MIMD machines, which architecture can fit
the beam former best? This is a complicated issue. The MIM
module decomposition is used to resolve this question.

3. How do you decompose the algorithm into MIM modules? The
decomposition depends very much on the architecture under
consideration. How are these considerations related?

2. Beam Forming Algorithm I

Let's assume there is a source in the far field radiating a planar wave I
at an angle of 0 with respect to the sensor array shown in Figure 2. The
signal received at sensor 1, x, (t) is a delayed version of the signal x2 (t),

x3(t) .... , XM(t) of the other sensors. Let the delay in time be A

A=dcos0/ X (1) I
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where X is the wavelength of the source. d is the distance between

x 1 M1

X 2 (t)

JId

far field source

XM(t)

Figure 2. Linear uniformly spaced sensor array.

sensors. Assume that we are dealing with an evenly spaced linear array of
sensors. The distance between sensor is d.

x1 (t) = xo(t-A)

x2 (t) = x1 (t--A) = x0 (t-A)

xM(t) = XM l(t-A) .... =x 0 (t-MA) (2)

If we consider the Fourier Transform of the sensor signals,

Xj(f) = X0 (f) e-J 2RfA

X2 (f) = X0 (f) eJ 2 ,f 2 A

XM(f) = X0 (f) e-j2fMA

or
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Xn(f) = Xn(f) e-J2nfnA (3)

Here is the broad-band acoustic beam forming procedure that uses
basically a delay-sum approach. There are two possible approaches for
broadband beam forming procedure; time domain approach and frequency
domain approach. Due to easier computation requirements and
applicability to optimal and adaptive beam forming, the frequency
approach is considered here. The signal flow diagram for a beam former is
shown in Figure 3. For each frequency a set of Wn(f) is used in the I
algorithm.

M

Y(f) =.an Xn(f) Wn (f) (4) 1
n=1

Select, I
Wn(f)=e-J2 fnA (5)

Equation (4) becomes.

M

Y(f) = Ian [Xo(f) e-j27fnA ]-Wn (f)
n=1

M

IXan'xo(f) e-j20fnA'.ej20fnA 3
n=t

M M

I , anXo(f) = Xo(f) Y an 5
n=1 n=1

It is obvious that this special selection of Wn(f) resulted in the coherent I
summation of the beam former output, Y(f). The Wn(f) is called the

steering vector that is dependent on the angle of arrival 0 in equations (5) I
and (1). In order to hear the beam from different directions the whole
operation in Figure 3 are repeated for each direction angle. The steering 3
vector in reality also depends on the source frequency as shown in
equation (5). Therefore, even though the direction of the beam is fixed, 5
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Figure 3. Frequency domain approach for beam former.

different sets of Wn (f) have to be provided for a different temporal

frequency in the broad band spectrum. If audio output is required, the
spectrum signal Y(f) will be inversely transformed into the time domain.

3. To Answer the Obvious

Many people know the answer to the question of whether the beam
former is a computation intensity operation. Here a set of measures are
developed to answer this obvious question. The computation requirements
of a beam former is determined from the mathematical model developed in
the previous section. The model shown in Figure 3 encompasses the
equations and English description of the previous section. It is
mathematical, but not vigorous and rigid from the point of view of a
computer language syntax. In order to show it as a computation intensive
operation we use the following measures.

Ml: Computation Bandwiath (BW) requirement: A real-time beam
former receives acoustic signals, processes the data, and provides beam
information y(t) for a specific frequency to subsequent systems. Due to
hard real-time delays required for processing it is necessary to consider
processing capacity in unit time. Frequency of operations per unit time is
characterized in terms of the computational BW requirement
(Megaflops/sec).
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a
M2: Communication Bandwidth (BW) requirement The beam former

typically processes data from sensors and steering vectors from database
The hard real-time delay has to be satisfied These are specified as 1IO

bandwidth (BW) requirements (bytes/sec) The beam former algorithm

requires certain capabilities, and whether an architecture can fulfill ithat
requirement is an important question,

M3: Memory Bandwidth Requirement: Very often in order to speed up

operation some of the coefficients can be precalculated and stored into
the memory. Sometimes, the memory reads and writes are so frequent and
intensive, the total run time slows down. In real-time applications it is
also imperative to characterize this impact in terms of memory
bandwidth requirement,

4. Beam Former? Be SDecific! I

A beam former (BF) problem is discussed here. The requirement of
this beam former depends very much on the size of the array and the
number of beams involved. It is essential to be specific to analyze a beam
former problem. A Passive Sonar Example Draft (version 0.02) created for I
the Design and Synthesis Technology Project in Naval Surface Warfare
Center is used here as a guideline. This example allows fixed beam
forming, steerable beam forming, and acoustic channel output.
Environmental and seasonal data can also influence the operation of the
BF. For the study here to demonstrate the idea of MIM decomposition, this 3
draft system has been simplified as follows.

Very Simtlified Beam Former:I

1. Only fixed beam forming is included. 5
2. A 1-D linear uniformly spaced array is considered.
3. Total sensors is 100.
4. Frequency domain approach is adopted.

5. Azimuthal coverage of 3600 with 30 resolution.
6. Frequency coverage is from 0-256 Hz.

The coefficient multiplication with an in equation (4) is sensor 5
dependent. This multiplication is part of the signal conditioning
operation. It is done in analog electronics. Therefore, it is not considered
as part of the beam former. There are two basic kinds of operations in a
beam former. The first operation is the Discrete Fourier transform using
Fast Fourier Transform (FFT) algorithms. To cover a spectrum to 256 Hz,
Nyquist rate requires a sampling frequencing of
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I
fs = I/T 512 Hz, Let's assume that N-point FFT is involved in Wmis

system. The total rate for doing FFT is

SNe. 1/2 - N1og 2 N

I = 1/2 Nelog 2N-fs

NT

where: Ne is the number of sensor elements, i.e. Ne= 100.

N = 512 and T = 1/512 sec

Because real data is transformed, the Hermitian property spares us from
calculating negative frequency components. Therefore, the total

Scalculation is 1/2 N log 2 N within N -T sec for all sensor signal For our
very simplified BF,

SRFFT= 1/2 (100) 9 512 = 230.4 KFLOPS

I The second operation is the dot product calculation shown in equation
(4). There are Nenumber of multiply-add operations for each beam

direction. Since the steering vector depends also on the frequency, with N
frequency the rate for vector product is

I NNeN

RDP= Nb Ne" f o

NT

l where Mb is the number of beams, i.e. Nb = 120. For the very simplified BF.

I RDP = 120-1 00"512 = 6.144 MFLOPS

The total computational bandwidth of the BF is

I CompBW = RFFT + RDF = 6.385 MFLOPS

The beam former is one part of the total system. Its effectiveness
depends on the input/output it can provide. The input bandwidth
requirement comes from accepting the signals from the conditioner.
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i/P BW Ne fS2 bytes/sample i

= 100-51 22 , 102-4 Kbytesisec B
Where, each sample from A/D convertor is a 12-bit real value which takes
2 bytes. The output is fed to the tracker process of the simplified sonar S
system. Each beam data has 4 bytes per sample.

O/P BW =Nb f s 4 bytes/sample g
= 1205124 - 245.76 Kbytes/sec

While the dot product is in operation, it is necessary to read out the
steering vectors for equation (5) in real-time. The memory bandwidth
requirement is,

MEM=BW=Nb-Ne fs 4 bytes/output

= 120-100,512-4

= 24.576 Mbytes/sec

In summary, the mathematical model can be represented as a VHDL entity
with its capacity requirement as shown in Figure 4. 5

UIP BW Computational O/P BW
SBW ,

102.4 Kbytes/sec 6.385 MFIops 245.76 Kbytes/sec

MEM BW
24.576 Mbytes/sec

Figure 4. Mathematical model of beam former with 3
capacity requirement.
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5. Peak rate and sustainable rate

As a first look of the capacity requirement shown in Figure 4, it does
not seems to be stringent. Keep in mind that the very simplified beam
former is a trivial example. Realistic beam former has much larger
capacity requirements than these. Even for such a small task the
bandwidth described so far is the sustainable bandwidth not the peak
bandwidth. Many commercially available processors or DSP chips claim a
capacity in this order of magnitude. But, their claims are universally
peak bandwidth. It means under the most ideal situations without delay of
data and delay of instructions the processor can achieve, for example, 10
MFLOPS capacity. The overall sustainable processing rate very much
depends on the communication of data or instructions in the system,
which is much smaller than the peak rate. Consequently, this is a MIM
type of situation where the communication consideration outweighs the
computational considerations in the system. Exactly how communication
affects the computation depends on the type of algorithms involved. Some
commercial systems can achieve a very high CPU processing rate (FLOPS).
But, sustainable rate for other types of jobs is very poor. As far as beam
forming is concerned sustainable rate of a potential candidate
implementation or architecture is of primary interest.

7. Measures characterizing architectures

Before we attempt to address the question of how to partition
algorithm into MIM modules, it is necessary to characterize the MIM
modules to see whether it can be accommodated in a particular
architecture. In addition to the bandwidth requirement developed
previously, it is also essential to consider the following measure.

M4: FLOPS-1/O ratio (a): This is a measure to characterize the
proportion of computation done versus communication (i/O) required in the
partition. It can be used to describe the MIM module requirement. It can
also be used to characterize the architecture element. If the peak FLOPS-
I/O ratio (a) of an architecture element is less than the MIM module
requirement, it is possible to fit the MIM module into the element. If the
peak FLOPS-I/O ratio (a) of an element is greater than the MIM
requirement, problem exists to use this architecture element.

M5: Latency -FLOPS Droduct (13Q: This is a measure to compare
different decompositions of MIM modules for architectural elements.
Generally, an element can be tuned to achieve a high FLOPS rate, but the
latency associated with the data stream is also increased. Consequently,
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I
it is necessary to compare the latency-FLOPS product among different
architecture elements. For a particular MIM module partition it is also
necessary to calculate the latency-FLOPS product. Only elements with
less latency-FLOPS product can accommodate the MIM module of larger i
latency-FLOPS product.

MIM modules with small FLOPS-1O ratio and latency-FLOPS product are

generally referred to as fine grain tasks. On the other hand, architecture 6
elements usually have limited achievable FLOPS-I/O ratio and latency-
FLOPS product. Fine grain MIM modules can only be accommodated in fine
grain architecture elements. Essentially, the FLOPS-1/O ratio and the
latency-FLOPS product are measures to characterize computational
activities relative to communication activities. With these measures it a
will be easier to analyze the results of different mapping approaches.

8. MIM decompositions

Let's assume that a real beam former is probably a hundred times I
bigger than the very simplified example considered here. Realistically it
is not possible to use a high performance processor to accommodate the

capacity requirement shown in Figure 4. Either specialized hardware,
multiple processor, or parallel processor systems have to be used to
accommodate the problem. The issue is about how to partition the BF
algorithm and mapping them to a specific architecture.

Up to now the possible known implementations of a beam former can

be summarized in Table 1. Most beam formers are implemented in bit-
slice microprocessors with FFT and FPU chips [1]. Communication is done
point-to-point through high speed short run-length buses. The
architecture is arranged by the designer. There is some micro
programming involved. It is small and just for the purpose of controlling
the beam former. With all the FFT chips available such as TRW2310,
HDSP66110, and UT69532, multiple-bus structure using this kind of chips
has been developed for beam forming, Real time operation of this kind of3
system has been demonstrated. Beam forming was done on a Single
Instruction Multiple Data (SIMD) parallel system such as CM-2, [2]. Even

for non real-time prototypes, the programming work is not easy. Other I
kinds of parallel systems such as Multiple Instruction Multiple Data
(MIMD) were used to prototype a beam former, [4]. EMSP is one of the Navy 3
system tried over the years. Programming and communication scheduling
is an important issue in this kind of system. The overall objective is to

develop a low cost system for both hardware and software costs over the =
life cycle of the system. More work needs to be done to demonstrate these
new technology implementations.

For an algorithm the MIM decomposition depends on the mathematical
418 3



model and the available architectural elements. In Figure 1 to do a good
MIM decomposition it is necessary to consider both the left hand side
algorithm and the right had side architectural element. For the bit-slice
processor implementation, you probably will decompose the mathematical
model into a MIM module more along the line of the signal flow graph
shown in Figure 3. Basically the beam former will have the following
architectural elements.

(a) FFT chips for DFT algorithm.
(b) FPU chip for floating point arithmetic.
(c) Point-to-point High Speed bus for communication.
(d) Bit-slice microprocessor to implement control sequences.

If you are considering a mesh connected iWarps for beam former
implementation, a different approach for MIM decomposition may be used.
An iWarp processor is more capable than doing a simple FFT job. The MIM
module can be a combination of FFT's, floating point multiply and addition
together. The crucial issue is on what will be the grain size of the MIM
module, and can it be fitted into an iWarp architectural element. The
aproach is to calculate the measures discussed previously for both the
MIM modules and the iWarp processor. Then, fitting is based on comparing
the measures of both the MIM modules and the iWarp processor.

9. MIM modules for bit-slice Implementation

Consider the FFT module for a bit-slice implementation shown in
Figure 3. The total computational bandwidth required is

1/2"N10g 2 N

CompBW = ---------- = 1/2"log 2 N-fs

NT

= 2,304 FLOPs

This requirement is equivalent to do a 512 point FFT transform in one

second. In reality an FFT module in a board can performa 512 point FFT in
10 msec continuously. It means that if only computation BW is concerned,
a FFT board module can accommodate 100 MIM modules.

In reality, it is very important to consider the communication
bandwidth requirement as well. For the FFT MIM module in Figure 3. Input
and output bandwidth requirements are as follows:
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I/P-BW 512 • 2 bytes/sec I
= 1,024 bytes/sec

O/P-BW = 512 - 4 bytes/sec

= 2,048 bytes/sec !

CommBW = I/P-BW + O/P-BW = 3,072 bytes/sec

For example an array processor board such as PL2500 from Eighteen Eight
Laboratory, only the peak bandwidth on an AT bus was known as 3.3
Mbytes/sec. Considering sustainable rate and all of the communication
overhead, 1% of the peak rate was chosen as a nominal rate, 30Kbytes/sec.
Consequently, a FFT hardware board can only accommodate 10 FFT MIM 5
modules. This situation is described in Figure 5. In reality, both
computational bandwidth and communication bandwidth are considered.
The FFT board can only accommodate 10 channels of FFT MIM modules so

far. £

each MIM module each architectural FFT boards
accomodates 3

100 MIM

consider CompBW = 2,304 FLOPs CompBW = 100 x 2,304 FLOPs 5
203.4 KFLOPs

10 MIMN

FF1T FFff .....

consider CommBW =3,072 bytes/sec CommBW =30 Kbytes/seci

Figure 5. Mapping of MIM to architectural elements with
partial consideration of measures. i

10. Conclusions

The algorithm and characteristics of a beam former was introduced
420 i



and described. Due to the nature of a beam former, communication
considerations outweigh the computational considerations in this problem.
That is a typical Massively Interconnected Modeling (MIM) type of problem.
A set of capacity measures in terms of bandwidth are developed here.
These measures are used in the mapping process from mathematical
algorithms to MIM modules and from MIM modules to architectural
elements. Due to available space for discussion only the bit-slice
approach for a beam former is presented in a simple analysis using the
capacity measures. It shows that communication considerations are the
main factor in all fitting/mapping problems for a beam former.
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Abstract

We present two software applications and develop models for them. The first application I
considers a producer-consumer tasking system with an intermediate buffer task and studies 3
how the performance is affected by different selection policies when multiple tasks are ready

to synchronize. The second application studies the reliability of a fault-tolerant software sys-

tern using the recovery block scheme. The model is incrementally augmented by considering

clustered failures or the effective arrival rate of inputs to the system.

We use stochastic reward nets, a variant of stochastic Petri nets, to model the two software

applications. In both models, each quantity to be computed is defined in terms of either the I
expected value of a reward rate in steady-state or at a given time 0, or as the expected value of I
the accumulated reward until absorption or until a given time 0. This allows extreme flexibility

while maintaning a rigorous formalization of these quantities. 3

4
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List of Symbols

greek pi (lower case)

H greek pi (upper case)

A greek lambda

I greek mu

v greek nu

6 greek delta

0 greek theta

r greek tau

p greek rho

greek sigma

greek alpha

greek beta

greek xi

w w (lower case)

0 empty set, similar to a zero with a slash through it

IR strange R, for real numbers

IN strange N, for natural numbers

# pound sign

00 infinity sign

V forall

E membership in a set

D-, D+, D0 D sup minus, D sup plus, D sup small circle
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1 Introduction

Many appLications demand high performance and reliability/avzaiability from oumputtr s•--

tems. Higher levels of integration and newer techuiiqu" in VLSI dezign hLae made ha1talo&r rr

with high performance and reliability, relatively inexpenSive. Sftware on the uthir hand, is

becoming a major component in the overall coot of theae syltemsn 121 ,. Oftei, though, the Soft

ware poses performance and reliability bottlenecks which should be di•,coverred ad eliminatt-ed.

Improvements in software a&smssment wethods for the dsign phaae of the ,,ftwazrv life cycle 3
are required to rniuimize costly redesigns and changes due to ununi :ipated ;R-rfrmaxncr or

reliability problems. I
Markuv models have been used for *)ftware performa.ncc as.". sn t 110, wft dware rchiabil II

ity assessment [171, and for analyzing software fault-tolerance [9, 14, "21I Mrkcv r models have

been quite popular in hardware perforrmwn e mdctls and hardware reliability modxels asw well,.

Reasons for the popularity of Markov models include the ability to capture various depunden

cies, tile equal ease with which steady-state, transient and cumulative transient rea surers can 3
be computed and the extension to Markov reward models useful in performability analysis.

The main drawbacks of Markov models include Lhe size of the state spare and the aisl)imption 3
of exponentially distributed sojourn times It is possible to remove the assumption of exp-)nen

tial sojourn time distributions by using phase-type expansions of non expo-lential distributions

[13, 291. This method converts a non-,Markovian problem into a Maxkoviaio one with an even 3
larger state space.

Stochastic Petri nets (SPNs) can be used to specify the problem in a concise fashion and 3
the underlying Markov chain can then be generated automatically. Algorithms for storing and

efficiently solving relatively large Markov chains have emerged and have been implemented in 3
several packages [6, 8, 23]. Our version of SPNs, called stochastic reward nets (SRNs), not only

allows the compact specification of large Markov models but also permits the concise specifi-

cation of reward structure at the net level. In this way, automatic generation of large Markov

reward models is facilitated. Steady-state, transient, and cumulative transient measures of

the resulting Markov reward mod Is can be computed [8]. We illustrate our approach with 3
426 £



two examples: software performance assessment of a producer-consumier system and reliability

assessment of the recovery block, a software fault-tolerance scheme.

As we will show, detailed behavior of the system can be described concisely and the effects

of various design decisions can be predicted easily. We note that SRNs are also suitable

for hardware performance, reliability, and performability analysis, hence they can be used for

combined hardware-software analysis. Some aspects of system hardware are indeed represented

I in the models described in this paper.

Several papers are relevant to our study. Performance modeling of concurrent software has

i been carried out using Markov chains [11, 12], series parallel graphs [16], queueing networks

[28], stochastic rendezvous networks [31, 30], and SPNs [18, 5, 26]. A recent study by Leu et

S al. uses SPNs to model fault-tolerant aspects of software [15].

Section 2 gives a brief review of the SRN concepts; it also contains an explanation for the

i symbols used in the paper. In Section 3 we present the analysis of a producer-consumer tasking

system and in Section 4 we present the analysis of the recovery block scheme. Conclusions are

presented in Section 5.

I
2 Stochastic Reward NetsI
There are several definitions for Petri nets [19, 20] and even more for stochastic Petri nets. Our

I SRN formalism allows only exponentially distributed or constant zero times, so its underlying

stochastic process is independent semi-Markov with either exponentially distributed or constant

zero holding times. We assume that the semi-Markov process is regular, that is, the number

I of transition firings in a finite interval of time is finite with probability one. Such a process

can then be transformed into a continuous-time Markov chain as it is done for the generalized

I stochastic Petri net (GSPN) formalism [1].

The SRNs differ from the GSPNs in several key aspects. From a structural point of view,

I both formalisms are equivalent to Turing machines. But the SRNs provide enabling functions,

marking-dependent arc cardinalities, a more general approach to the specification of priorities,

I and the ability to decide in a marking-dependent fashion whether the firing time of a transition
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is exponentially distributed or null, often resulting in more compact nets. Perhaps more I
important, though, are the differences from a stochastic modeling point of view. The SRN g
formalism considers the measure specification as an integral part of the model. Underlying

an SRN is an independent semi-Markov reward process with reward rates associated to the 3
states and reward impulses associated to the transitions between states. Our definition of SRN

explicitly includes parameters (inputs) and the specification of multiple measures (outputs). 3
A SRN with m inputs and n outputs defines a function from IR[' to WR".

We define a non-parametric SRN as an 11-tuple A = {P,T, D-, D+, Do,e, >,1o, A, w, M},I

where: I

"* P = {pi, ...,PIp} is a finite set of places. Each place contains a non-negative nuxmber of

tokens. The multiset describing the number of tokens in each place is called a marking. I
The notation #(p,p) is used to indicate the number of tokens in place p in marking p. II
If the marking is clear from the context, the notation #(p) is used.

"* T = {tj, ... , tpTI} is a finite set of transitions (P fl T = 0). 3
Vp E P, Vt E T, DOt : NIPI -- IN, D+t: INIPI - IN, and Drto : INIPI - IN are the 3
marking-dependent multiplicities of the input arc from p to t, the output arc from t to

p, and the inhibitor arc from p to t, respectively. If an arc multiplicity evaluates to zero

in a marking, the arc is ignored (does not have any effect) in that marking.

We say that a transition t E T is arc-enabled in marking p iff

Vp E P, Dt(y) # < (p, p) A (D;(i)> #(p, p) V D =, O() =)I

When transition t fires in marking p the new marking u' satisfies: 3
Vp E P, #(p, A') = #(p, p) - D?,(p) + DI+(p) I

"* Vt E T, et : INI' -- t {rue, false} is the enabling function of transition t. If et(p) = false, 3
t is disabled in p.

4
428 3



* > is a transitive and irreflexive relation imposing a priority among transitions. In a mark-

ing IA, t1 is marking-enabled iff it is arc-enabled, eg1(j) = true, and no other transition

t2 exists such that t2 > t1 , t2 is arc-enabled, and eg2(p) = true. This definition is more

flexible than the one adopted by other SPN formalisms, where integers are associated

with transitions (e.g., imagine the situation where t1 > t2, t3 > t 4, but t1 has no priority

relation with respect to t3 and t4).

* po is the initial marking.

* Vt r= T, At : INIl --+ IR+ JU {oo} is the rate of the exponential distribution for the firing

time of transition t. If the rate is oo in a marking, the transition firing time is zero.

This is a generalization of [1), where transitions are a priori classified as "timed" or

"immediate". In this paper, though, there are transitions for which the rate is always

oo. We still call them immediate and we represent them with a thin bar instead of a

hollow rectangle. The distinction between vanishing and tangible markings introduced

in [1] is still applicable: a marking pu is said to be vanishing if there is a marking-enabled

transition t in pA such that At = o0; pu is said to be tangible otherwise. We additionally

impose the interpretation that, in a vanishing marking ju, all transitions t with At (,t) < :0

are implicitly inhibited. Hence, a transition t in a marking p is enabled in the usual sense

and can actually fire iff it is marking-enabled and either p4 is tangible or p is vanishing

and At(p) = oo.

* Vt E T, w, : INI' 1 + IR+ describes the weight assigned to the firing of enabled transition

t, whenever its rate At evaluates to oo. Assume that the set of transitions X C T

is enabled in a vanishing marking q. Then, the probability of firing transition t in it is

given by w,(p)/(EYXx wy(p)). If a marking-dependent weight specification is not needed,

the definition of w can be reduced to Vt E T, wt E lR+.-

The SRN components described so far define a trivariate discrete-parameter stochastic

process: {(0, T•, O,), n E IN}. p,, is the n-th marking encountered, T,, E T is the n-th transition

to fire (marking li,+l is obtained by firing transition r,, in An), and On, > 0 is the time at which
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a
it fires (Oi > 0i-1). It is also possible to define a continuous-time process describing the

marking at time 0, {pI(0),0 > 0}, which is completely determined given (p,, r,,,), n TN: E

p(O) = Pm{•:9,<e). This process describes only the evolution with respect to the tangible

markings, that is, Pr{p(O) is vanishing} = 0. 3
The last component of an SRN specification defines the measures to be computed: I
. M = {(plr1,41),.-.,(PMIrIMI,#IMI)} is a finite set of measures, each specifying the

computation of a single real value. A measure (p, r, 0) E M has three components. The 5
first and second components specify a reward structure over the underlying stochastic

process {(p,,,,),n E IN}. p : INIPI _-# 1R is a reward rate: p(p) is the rate at I
which reward is accumulated when the marking is p. Vt E T, r, : INIPI -+ JR is a I
reward impulse: rt(p) is the instantaneous reward gained when firing transition t while

in marking p. Often, a marking-dependent reward impulse specification is not needed I
and the definition of r can be simplified accordingly. The reward structure specified

by p and r over {(p.,Tr,O,), n E IN) defines a new stochastic process {Y(O),0 >_ 0), 5
describing the reward accumulated by the SRN up to time 0:

Y(O) = J p(p(})du + ,.)

The third component of a measure specification, 0, is a function that computes a single

real value from the stochastic process {Y(0), 0 > 0}. If RZ is the set of real-valued I
stochastic processes with index over the naturals, then 0 : R J R. The generality

of this definition is best illustrated by showing the wide range of measures the triplet 3
(p, r, 0) can capture (in some SRNs, some of these measures might be infinite): I

- Expected number of transition firings up to time 0: this is simply E[Y(0)] when all

reward rates are zero and all reward impulses are one. 3
- Expected time-averaged reward up to time 0: E [LI-U].

- Expected instantaneous reward rate at time 0: E [Ilims-.o -Y()] -

- Expected accumulated reward rate in steady-state: E [lima-... Y(0)]. I
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- Mean time to absorption: this is a particular case of the previous measure, ob-

tained by setting the reward rate of transient and absorbing states to one and zero,

respectively, and all reward impulses to zero.

- Expected instantaneous reward rate in steady-state: E [lim#...1 lims.. Y(+-_YJ N],

which is also the same as the expected time-average reward in steady-state: E [ime*, Lo-].

- Supremum reward rate (assume that all reward impulses are zero):

sup9 >o {v: v E IRA Pr {limn-.o Y(1+>)-(9)0 =v}>0}

This quantity can be expressed more simply using the stochastic process {(p,), n E

IN}: sup,>O {p(p) : Pr{p[n) = p} > 0}.

Our intention is to define parametric SRNs. This can be accomplished by allowing each

component of an SRN to depend on a set of parameters v = (vI, ..., v,n) E 1R":

A(Y) = {P(v), T(v), D(v), D+(v), D*(v), e(v),> (v), po(v), A(v), w(p), M(P)

Once the parameters v axe fixed, a simple (non-parametric) SRN is obtained.

The underlying stochastic process can be solved analytically to compute the probability of

being in each tangible marking y at time 0, ir,(O), or in steady state, 7r.. It is also possible

to directly compute the cumulative time spent in each tangible marking p during the interval

[0, 0), fo -x,(r)dr. All the measures described in this paper are expressed as expectations using

reward rates only and they can be easily computed as a linear combination of the values of

these probabilities or cumulative times.

3 Analysis of a producer-consumer tasking system

Consider a computer system where data items produced by N. producers are consumed by

N, consumers. The exchange of items between the N. producer tasks and the Nc consumer

tasks is performed using one additional buffer task. A pseudo-Ada description of this system

appears in Figure 1 [7].
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The buffer task stores the incoming items into array Slots, having N. positions, and it uses I
the integer variable FullSlots to keep track of the number of non-empty slots. Producer tasks

cannot pass items to the buffer task when FullSlots is equal to N. and consumer tasks cannot

retrieve items from the buffer task when FullSlots is equal to 0. The number of produced items 3
cannot then exceed the number of consumed items plus N.. A larger value for N, can only

attenuate the effect of temporary increases in the production or consumption rates, but these 3
are equal in the long run.

The mechanism by which two Ada tasks synchronize and exchange data is the "rendezvous".

Whenever a producer task has an item ready to pass, it issues an "entry call" to the buffer g
task (line 16). If the buffer task accepts this entry call, the rendezvous takes place, FulSlots is

incremented, and the item is copied into array Slots (lines 35-37); similarly, a rendezvous with

a consumer (lines 41-43) decrements FullSlots by one.

Each "entry" (lines 05 and 06) has an associated queue, where tasks making an entry call

wait for a rendezvous. The presence of "guards" EnablePut and EnableGet (lines 34 and 40)

inhibits the rendezvous at the guarded entry if the boolean condition is false (the guard is 3
"closed"). Table I describes the value assumed by these boolean predicates based on three

factors (presence of tasks in each of the two queues and value of variable FullSlots), for the five

different policies discussed. When the buffer task is ready to rendezvous, the following cases

can arise:

"* Only one guard is open, but its associated queue is empty. This happens only when all I
the slots are full and no consumer is waiting, or all the slots are empty and no producer I
is waiting. A rendezvous cannot take place right away; the buffer task waits until a task

joins the queue with the open guard. 3
"* Both guards are open, but their associated queues are empty. A rendezvous cannot take

place; the buffer task waits for the first task to join any of the two queues.

"* Only one guard is open and its associated queue contains at least one task. A rendezvous I
with the first task in that queue takes place immediately. g
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01 NP : constant number of producers;
02 Ne: constant number of consumerr,
03 N,: constant :- number of buffer slots;

04 task Buffer is
05 entry Put( Item : in data);
06 entry Get( Item : out data);
07 end Buffer;

08 task type Producer;
09 task type Consumer;

10 Producers: array (1.. Np ) of Producer;
11 Consumers: array (1.. N, ) of Consumer;

12 task body Producer is
13 Item : data;
14 begin
15 loop
16 Buffer.Put( Item);
17 statements Sp;
18 end loop;
19 end Producer;

20 task body Consumer is
21 Item : data;
22 begin
23 loop
24 Buffer.Get( Item);
25 statements Sc;
26 end loop;
27 end Consumer;

28 task body Buffer is
29 Slots : array ( 1 .. N0 )of data;
30 FullSlots: Natural := 0;
31 begin
32 loop
33 select
34 when EnablePut =>
35 accept Put( Item : in data) do

36 FullSlots := FullSlots + 1;
37 Slots( FullSlots) := Item;

38 end Put;
39 or
40 when EnableGet =>
41 accept Get( Item : out data) do
42 Item := Slots( PullSlots);
43 FullSlots := FullSlots - 1;

44 end Get;
45 end select;
46 statements Sb;
47 end loop;
48 end Buffer;

Figure 1: Pseudo-Ada description of the producer-consumer system.
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a
* Both guards are open and their associated queues both contain at least one task. A I

rendezvous with either the first producer or the first consumer in their respective queues II
takes place immediately.

Only the fourth case requires a choice between a rendezvous with a producer and a ren- 3
dezvous with a consumer. In its definition, Ada makes no guarantee about which queue is

actually selected. If a particular selection policy is desired, it can be enforced by modifying

the guard predicates so that, when no queue is empty, exactly one guard is open. 5
In Table I, five different policies are presented:

"* Nondeterministic (ND): nondeterministically select either a producer or a consumer, with I
uniform probability. This can be accomplished, for example, using a pseudo-random a
number generator. It is also possible to remember the selection made the previous time

in this situation and toggle the selection; this is likely to be faster, but it introduces a

correlation in the sequence of selections.

"* Producer First (PF): select a producer. I
"* Consumer First (CF): select a consumer. 3
"* Proportional (PR): nondeterministically select either a producer or a consumer, but, I

instead of using uniform probability for producers and consumers, use a probability split

proportional to the number of empty and full slots, respectively. This bias tends to keep 3
the number of empty and full slots more balanced, which is intuitively a good idea. I

" Threshold(TH): choose a producer if more slots are empty than full; choose a consumer

if more slots are full than empty; choose either with uniform probability if exactly half 3
of the slots are full. This policy tries to achieve the same goal as the previous one, but

deterministically. When exactly half of the slots are full, the behavior is the same as in 3
the ND policy; for simplicity, we assume N, to be odd, so this case cannot arise.

So far, the description of the system has been focused on the software, but the actual

timing behavior is determined also by the hardware architecture and by the allocation of tasks 3
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Table I

Values for Boolean Predicates EnablePut and EnableGet.

Policy Condition Value returned

Producers Consumers Value of EnablePut EnableGet

Waiting Waiting FullSlots

X X X 0 true false

X N. false true

X no no L..N, - 1 true true

X yes no true X

X no yes X true

ND yes yes 1..N, - 1 a not a

PF yes yes 1..No--1 true false

CF yes yes 1..N, - 1 false true

PR yes yes 1..N, - 1 '8 not /

TH yes yes 1.. IN. - 1j/2 true false

rNo + 11/2..No- 1 false true

N,/2 (N. even) a not a

Note: X means that the value is not relevant.

a is a boolean random variable with Pr{o = true) = 1/2.

,6 is a boolean random variable with Pr{fl = true} = (N, - Fullslots)/N..

to processors. Three possibilities are considered:

"* SINGLE: a classic single processor architecture, where all tasks share the same CPU.

"* THREE: a three-processor architecture, one processor for the N. producer tasks, another

435



!

Pwait Empty Cwait I

I

Plocal Full Clocal

Figure 2: The SRN for the producer-consumer system. I
for the N, consumer tasks, and the last one for the single buffer task. I

• MANY: a one-processor-per-task architecture, with no processor sharing. 3
The actual number of processors in the actual system could probably be somewhere between

3 and N. + Nr + 1, the single processor architecture is considered mainly for reference.

3.1 SRN model

The system just described is concisely modeled by the SRN in Figure 2. Tokens in places j
Plocal, Clocal, and Blocal represent tasks (of the appropriate type) executing the statements

Sp, Sc, and Sb, respectively, while tokens in places Pwait, Cwait, and Bwait represent tasks 1

waiting for a rendezvous at the Put or Get entries. The tokens in places Empty and Full

count the number of empty and full slots, respectively.

Transitions Sp, Sc, and Sb are assumed to be "black boxes" with an exponentially dis- 3
tributed time duration, but they could be changed into a more detailed phase-type expansion

(using a "subnet") if more information were available about the actual structure of the code.

This would increase the size of the reachability graph, but it would also allow a more precise

representation of the timing behavior in the case exponential distributions were not adequate.

Immediate transitions Put and Get correspond to the actions in the rendezvous (lines 34-38

436 1



and 40-44 in Figure i, respectively), which are modeled as instantaneous, since the time spent

for them is likely to be negligible compared to the other blocks of statements (if not, the SRN

could be modified to represent these times durations explicitly).

The five different selection policies described in the previous section are obtained by defin-

ing the appropriate value for predicates EnabledPut and EnableGet. Exactly analogous to

them, and even simpler to specify, are the "enabling functions" eput and eGt associated with

transitions Put and Get, respectively:

false if (policy CF and #(Cwait) > 0 and #(Full) > 0)

eput or (policy TH and #(Cwait) > 0 and #(Empty) > #(Full))

true otherwise

false if (policy = PF and enabled(Put))

eck t or (policy TH and #(Pwait) > 0 and #(Empty) < #(Full))

true otherwise

In addition, the probabilistic choices in the the ND and PR policies (and TH, when No is even)

can be specified by assigning weights wput and wGt to the two transitions:

#(Empty) if policy = TH
WPut =

1 otherwise

{ #(Full) if policy = TH
UlGet !

1 otherwise

The specification of the rates for the remaining three transitions completes the description

of the SRN. These rates are related to the times required to execute the blocks of statements

Sp, Sc, and Sb, but also to the type of hardware architecture, since sharing the processor slows

down the execution. Table II shows the firing rates used assuming perfect processor sharing

with no context switch overhead, and assuming that the times required to execute blocks Sp,

Sc, and Sb for a task running on a processor in isolation (no sharing) are 0.003, 0.003, and

0.0005 seconds, respectively.
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Table II I
Rates for the Transitions of the Producer- Consumer SRN 3

Transition Architecture Firing rate (sec"1 )

SINGLE #(Ploca1)/(0.003(#(Plocal) + #(Clocal) + #(Blocal)))

Asp THREE 1/0.003 3
MANY #(Plocal)/0.003

SINGLE #(Clocal)/(O.003(#(Plocal) + #(Clocal) + #(Blocal)))

AsC THREE 1/0.003 1
MANY #(Clocal)/0.003

SINGLE I/(O.0005(#(Plocal) + #(Clocal) + 1))

Asb THREE 1/0.0005 1
MANY 1/0.0005 1

Before concluding this section, it is useful to compute the number of markings generated by

the SRN analysis, both to check the correctness of the model and to avoid atte npting solutions I
that require excessive resources (memory in particular). For the parametric SRN of Figure 2, 1
this number is a function of the parameters N,, N,, and N, (the policy and the architecture

are also parameters, but they do not affect the number of markings). Table III shows how to 3
count the exact number of vanishing and tangible markings using a case analysis. Since the

number of markings grows as O(NINpNC), it is possible to study the system for reasonably I
large values of these three parameters (SRNs with • 104 markings can be normally analyzed

in a few minutes on a workstation, but SRNs with -ý 10' or even k 10' markings can be solved

in a matter of hours, if enough memory is available). 5

4
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Table III

Marking Count for the Producer-Consumer SRN

Contents of place J Markings

Empty Pwait Cwait Bwait Type Count

O..N, 0..N O 0..N, 0 tangible (N. + 1)(Np + 1)(N, + 1)

0..N. 0 0 1 tangible N, + 1

O..N.-1 0 1..N, 1 vanishing N, N,

1.N. 1..Np 0 1 vanishing NoNp

..N 1..NP 1..N 1 vanishing (N. + 1)NpNe

N. 0 1..NL 1 tangible Ne

0 1..NP 0 1 tangible Np

tangible markings: (N. + 1)((Np + 1)(N, + 1) + 1) + NP + N'r

vanishing markings: (N. + 1)NpN,. + Np,(NP + N,)

3.2 Performance analysis

The five policies defined earlier have a simple implementation in Ada. Even the ones requiring

a pseudo-random number generator introduce only a small overhead compared to the number

of statements likely to constitute the blocks Sp, Sc, and Sb.

The selection of a policy among the five ones presented could then be based on the effect

that these policies have on the perform,.nce of the system (in steady-state). Different aspects

of the system behavior might be the most relevant in defining "performance":

"* Response time for producers, consumers, or both.

"• Probability distribution of the number of producers blocked because all slots are full.

"* Probability distribution of the number of consumers blocked because all slots are empty.
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9 Throughput of the system, expressed as the number of items passed fronm awy producer I
to any consumer in a unit of time. 3

For the purpose of this study, the throughput of the system, r, is used. In the SRN of

Figure 2, the throughput of the producers, r,, can be computed by defining the reward rate 3
in marking p as As,,(/), the rate of transition Sp, and computing the expected reward rate in

steady-state:

=* >3 (3i

r. and rb can be computed in a similar way, or by observing that r = r, = rm = n/ 2 .

The value of r with the SINGLE architecture is the same independent of the policy adopted I
and of the number of slots, N,, producers, N,, or -onsurners, N4 (as long as none is zero): I
r = 142.857 sect. The reason is that the only procAssor is always busy, so r is simply the

inverse of the total time spent to process each item: G.OXC31 sconds in the producer task, 0.0005 3
seconds in the buffer task after the rendezvous with a producer, plus another 0.0005 seconds

after the rendezvous with a consumer, and finally 0.003 seconds in the consumer task, for a 3
total of 0.007 second& (1/0.007 = 142.857).

With the THREE and MANY architectures, r is instead affected by the three, parameters. 3
Figures 3 and 4 plot r as a function of N. for these two architectures using the ND policy in a

balanced system (N, = Ne). The effect of different policies is minor compared to doubling NV,

and NI, so it is studied later in this section.

With the THREE architecture, the improvement due to th" increase in N. is sublinear.

In addition, it is less noticeable for larger values of N. = N•, since, after a certain point, 3
the processors for the producers and the consumers become the bottleneck. In this case, the

limit for r is the inverse of the maximum of of the time spent on each item by each processor

(0.003, 0.001, and 0.003 sec respectively): 1imNNpj*.,... = 1/0.003 sec- 1 = 333.333 sec'.

For example, r = 329.340 sec-1 when N, = N, = 32 and N. = 19 (not shown).

The improvement due to increasing N, with the MANY architecture is even smaller. Fur-

thermore, it appears that the system is saturated when N. = N, = 8 and no appreciable

improvement is achieved by increasing N,. The reason is again to be found in the bottleneck, I
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this time the buffer task. The production (and consumption) rate could now be as high as

N./0.003 sec', since each task has a dedicated processor, but the buffer task is involved in two

rendezvous for each item, so that an upper bound on r is given by 1/0.001 = 1000 sec'. Since

4/0.003 > 1000, it appears that the buffer task is already the bottleneck when N, = N, = 4,

although, in this case, increasing the number of slots still has a visible effect on r (but the

increase is smaller than when Np = N, = 1, 2). To summari7e this first part of the analysis:

a It is advantageous to increase the number of producers and consumers, even if the total

computational capacity remains constant (architecture THREE). Depending on the na-

ture of the system, though, this may not be possible, since the number of tasks could be

dictated by external considerations (e.g., each producer task monitors a different sensor).

* Increasing the number of slots is always advantageous, but particularly so when only a

few producer and consumer tasks are present.

* On a highly parallel architecture (MANY), the buffer task soon becomes a bottleneck.

This points out a limitation of the Ada rendezvous. The buffer task must be introduced

because, in Ada, a task performing an entry call must know the identity of the callee,

so it is not possible to let a producer rendezvous directly with any consumer using a

single entry call. This problem can be alleviated by having several buffer tasks and

partitioning the producer and consumer tasks so that each buffer task serves only a

subset of the producers and consumers. Partitioning, though, introduces a different kind

of inefficiency. Producers associated to a buffer task having all the slots full sit idle, even

if other buffer tasks may have some or even all the slots empty.

Considering now the effect of the selection policies, it is immediately apparent that there

is no absolute "optimal" policy. Figure 5 shows r as a function of N, in an unbalanced system

(Np = 4, Nr = 2), with the MANY architecture, for the five policies. The ability of producers

to produce is higher than the ability of consumers to cor.ume, hence giving precedence to

consumers (CF policy) tends to restore the balance and is the optimal choice, while the PF

policy increases the unbalance, resulting in the worst throughput. The plot for Np = 2, N, = 4
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Figure 4: r (in sec-') as a function of N. (MANY architecture, ND policy). 3
(not shown) is exactly the same as the one for Np = 4, Nr = 2, with the exception that the 3
labels for the PF and CF policies are reversed: the PF policy is now optimal while the CF

policy is the worst, and the others achieve the same value (the ND, PR, and TH policies are
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"symmetric", so it should not be surprising that they result in the same throughput when

Np =4, N, =2 and when Np =2, N, =4).

The TH policy is the second best in either case, followed by the PR and ND policies, in that
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Figure 7: r (in sec- 1) as a function of N, (MANY architecture, N, = 8, N, = 4). 3
order. This can be justified by observing that the PR policy is a (not so useful) compromise

between the TH policy, which deterministically tries to achieve balance in the number of used 3
and free slots, and the ND policy, which completely ignores the status of the slots.

The same reasoning explains the effect of the five policies in a balanced system where

Np = N, = 4 (Figure 6). The two asymmetrical policies, PF and CF, are equally poor, while

the TH, PR, and ND policies are at the top, in that order.

The TH policy is a consistently good choice (nearly optimal in an unbalanced system, 3
optimal in a balanced system). If the number of producers and consumers is subject to change

during the deployment of the system, the TH policy is the best choice because of its easy I
implementation and predictable performance. For example, a system initially unbalanced in

favor of consumers could suggest the adoption of the PF policy, but inefficiencies would arise

if the situation had to be reversed later (the difference between the best and worst policy in 3
Figure 5 is over 5%).

The plots for the PF and CF policy in Figure 6 appear to have a much slower rate of 3
increase than the plots for the other three policies. This can be explained by considering

I
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what happens with the PF policy when the system is not unbalanced toward the consumers

(Np Ž N,.) and the buffer task is the bottleneck (N,/0.003 > 1/0.001). In this case, there

are often both producers and consumers waiting whenever the buffer is ready to rendezvous.

The PF policy, though, chooses a producer whenever possible, that is, whenever there is at

least one empty slot. The effect of this behavior, in the limit, is to let the number of full slots

alternate between N, (choose a consumer) and N. - 1 (choose a producer), with a negative

effect: the system might as well have just a single slot (N. = 1), since the "window" between

the number of produced and consumed items is effectively restricted to one most of the time.

Figure 7 is even more dramatic, showing no appreciable increase at all for the PF policy.

The values of r for a system with the MANY architecture, N, = 8, Nc = 4, and N, = 125 (not

shown) confirm this observation. The difference between the optimal CF policy and the TH

policy is minimal (994.3 sec 1 and 994.1 sec 1 , respectively), while the PF policy lags seriously

behind (891.4 sec- 1). Even more illuminating is the inspection of the probabilities HI. that all

slots are empty and Hl that all slots are full:

ne=p:#(Bmp a-4N, = <10-12 (ND, PF, PR, and TH policies){ 0.13929526 (CF policy)

0.275976 (ND policy)

0.553947 (PF policy)

7 = J = 0.000003 (CF policy)

0.010870 (PR policy)

0.000499 (TH policy)

These probabilities should be kept small, since, when all slots are full (empty), no rendezvous

can take place with a producer (consumer), thus increasing the probability that the buffer

task, which is the real bottleneck, remains idle. While He, is numerically negligible only for the

non-optimal policies, II is the most relevant quantity to observe, since Np > N,; Hf! is small

for both the CF and TH policies (about 170 times smaller for CF than for TH, although this
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difference affects the actual throughput T only marginally), but it is definitely high for the PF

policy, resulting in a considerably smaller value of r. 3
The average number vt of full slots also confirms this behavior:

123.22 (ND policy)

124.55 (PF policy) 3
!= #(Full, p)r, = 9.66 (CF policy)

100.72 (PR policy) U
71.40 (TH policy)

The TH policy does indeed achieve the value of v! closest to N./2 = 62.5, but is is still

sub-optimal, suggesting that the ideal value for vf is actually a function of N. and N, as well. I

4 Fault-tolerant software i

Design diversity as a means of achieving fault-tolerance in software has been suggested by I
several authors. Fault-tolerant software using this method include N-version programming [4]

and recovery blocks [22]. The former uses voting on the results of various versions for error

detection and the latter uses an acceptance test (AT) and rollback recovery. While these are 3
the two major approaches to software fault-tolerance, several hybrid methods have also been

proposed [22, 24]. 1
In this section, we analyze the recovery block (RB) scheme; a fault-tolerant software con-

struct that uses design diversity [22]. It consists of a primary module, one or more alternate i
modules and an AT. The primary and the alternate modules are based on different algorithms 3
for the same problem and may be implemented by different programmers. On a given set of

data inputs, the primary is executed first and the results are checked using the AT. Should 3
the AT fail to accept the results, the alternate modules are invoked in succession until one is

found to produce results that are accepted by the test or until all of them fail to satisfy the 3
AT. In the latter case, the RB is said to have failed on this input data set. The pseudocode

for a RB with a primary module and m alternate modules is shown below: I
446 3



ensure acceptance test

by primary module

else by alternate module I

else by alternate module 2

else by alternate module m

else error

Probabilistic models of RBs have been considered by several authors [3, 9, 25]. Discrete

time Markov chains (DTMCs) have been used to derive measures like the probability of RB

failure or the number of inputs (correctly) processed until RB failure; continuous time Markov

chains (CTMCs) have been used to derive time-based measures like the mean time to failure

(MTTF) or the (un)reliability of the RB. We note that if we are able to analyze a CTMC for

transient cumulative measures besides transient instantaneous measures, we can derive both

the above types of measures using a CTMC, i.e., we do not need to resort to two different

formalisms depending on the measures desired.

Pucci [21] points out some of the difficulties in estimating the parameters used in earliei

models. He classifies events occurring in a RB into four distinct categories based on the

behavior of the alternate modules and the AT. Four different events can occur:

(1) Module i produces correct results which the AT accepts.

(2) Module i produces correct results which the AT rejects.

(3) Module i produces incorrect results which the AT rejects.

(4) Module i produces incorrect results which the AT accepts.

It is easier to estimate parameters corresponding to these events. We consider a similar event

classification in the model presented in the next section.
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4.1 SRN model I
In this section, we present a general SRN model for the recovery block scheme. The primary 3
module is indexed by 0 and the alternate modules are indexed 1 through m. The execution

time of module i is assumed to be exponentially distributed with mean 1/ATm• and that of the 3
AT is exponentially distributed with mean 1/AT)gt,,, = 1/ATgti. The probability that module

i produces incorrect output is pi. We assume that the AT fails to detect erroneous module I
output with probability pc. This probability corresponds to event (4) mentioned above. We U
assume that this event is not catastrophic, unlike the assum; ion used by Pucci [21]. However,

it is easy to change our model to make this event catastrophic. The AT might raise a false 3
alarm with probability pf, which corresponds to event (2) above. We assume that this event

does not result in subsequent rejection of results from the other alternate modules, unlike 3
as assumed by Pucci [21]. This assumption can easily be changed in the model. We let Pc

be the probability that recovery following a failure to satisfy the AT is successful. We must 3
realize that all the above probabilities pertaining to any module i are conditional probabilities, I
conditioned upon the fact that module i is actually invoked and that the previous i- I modules

have failed. Thus, the correlation between the software modules is automatically accounted 3
for by the conditional nature of these probabilities.

The SRN model of a recovery block is shown in Fgure 8. The net is nearly self-explanatory. n

Place Pmo is the starting point of the RB. The firing of transition Tm0 corresponds to the

completion of the execution of the primary module. Transitions Tneo and Teo correspond to 3
the events that the results produced by the module are correct and incorrect respectively and

have weights 1 - pi and pi, respectively. Transition Tatneo represents the execution of the AT

after the module produces correct results. The immediate transitions Tso and Tfao, which

correspond to events (1) and (2) mentioned above, are then enabled. The weights of these two

transitions are given by I - pf and pf respectively. Transition Tateo represents the execution 3
of the AT after the module produces incorrect results. The immediate transitions Tseo and

Teeo, which correspond to events (3) and (4) mentioned above, are then enabled. The weights 3
of these two transitions are 1 - p. and p, respectively. Once an error is discovered, represented g
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Figure 8: SRN model for a recovery block.
by the firing of either Tf a0 and Taeo, the system initiates a recovery action. Transition Tar0represents a successfu recovery after a failure of the AT and transition Tf 1o represents an
unsuccessful recovery, thus resulting in the RB failure. The corresponding weights of these
two transitions are Pc and 1 - pc respectively. The output arc from Taro leads to Pmo1 , the
starting place of the first alternate module, while the output arc from Tf to leads to P fail
which represents the RB failure.

Tle alternate modules are similarly modeled by the other places and transitions indexed
from 1 to m. The structure of the last module is slightly different, since the failure of the last
module automatically results in a system failure. Thus, the output arcs from transitions Tfam

449



I

and Tsem lead to place Pfail. I
We can compute the mean time to recovery block failure or the distribution of time to

recovery block failure (its complement is the reliability of recovery block). For this purpose,

we assign reward rate 1 to all markings in which there is no token in place P fail; all other

markings are assigned a reward rate equal to zero. If we now compute the expected accumulated

reward until system failure, we obtain the MTTF: 3
MTTF= 7 j rT(r)dr 3

By computing the expected reward rate at time 6, we obtain instead RB reliability at time 6: 3
JA:# (P fIailIjA)=O

The unreliability UR(O), or probability of being failed by time 0, is simply given by 1 - R(O).

We can also compute the number of number of data sets processed until system failure, N, I
or until a specificd time 0, N(O). To compute these quantities, we assign the rate of transition

Tmo, AT,mo(p), as the reward of marking p. The expected accumulated reward until system I
failure or by time 0 yield respectively N and N(O). 3/00

N AT, (TAo() J r,(T)dr

N(O) = •,•T A7o()or,,(r)dr

The MTTF and N, the expected number of inputs processed until system failure, as a

function of the number of modules available in the system (including the primary module) are 3
shown in Figure 9. We assume that the execution rate of the primary module is ATr,. 0 = 1

min-'. For each alternate module, we assume that the execution rate is three-quarters that U
of the previous module, i.e., ATms = 0.75 AT ., 1_. This is a reasonable assumption, since we

would tend to use the fastest module as the primary module. The execution rate of the AT

is ATete. = ATTatnei = 100 min-1 . The probabilities are Vi, pi = 0.1, pý = 0.01, pl = 0.01, 3
and Pc = 0.999. Figure 9 shows how an increase in the number of alternate modules causes

an increase in MTTF and N. Further, it is interesting to note that the greatest benefit of 3
450 3



10000

9000

8000

7000

6000

5000

4000

3000

2000 MTTF

1000 N -

1 2 3 4 5 6 7 8
Number of Modules, m + 1

Figure 9: MTTF and N for the RB as function of the number of modules.

increasing the number of alternate modules is between 1 and 5. Beyond five alternate modules,

the additional benefit is quite small.
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Figure 10: Failure probability for the RB as a function of time.

The distribution of the time to failure for the RB with 1, 2, and 3 alternate modules is
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Figure 11: Number of inputs processed by the RB as a function of time. 3
plotted in Figure 10. From the figure we can see that the probability that tLe RB has failed

by any given time 0 decreases with increase in the number of alternate modules. The number I
of inputs processed by time 0, N(0), for the RB with 1, 2, and 3 alternate modules is shown

in Figure 11. The value of N(O) levels off beyond 0 = 400 min for the system with 1 alternate,

since the RB is very likely to have failed by that time. 3
4.2 Extensions 3
4.2.1 Clustering in the input data stream 3
The failure points in the input space for the RB tend to occur in clusters [2]. The sequence of

input values to the RB tend to change slowly with time, thus, given a failure of the primary 3
module for a given input, there is a greater likelihood of it failing for subsequent inputs. This

clustering behavior in the input data stream should be taken into account. Csenki [9] considers I
a discrete time Markov model of a RB with failure clustering. He assumes that the system 3
has a primary module and a single alternate. Given that the primary module has failed for a

particular input, the number of subsequent inputs for which the module fails is assumed to be 3
452 3



a random variable e. The length of this additional sequence is however upper-bounded by a

fixed value a. Thus, we can define the probabilities pi = Pr{e = i} where 0 < i < or.

P"10 Teo Iq A

Patneo Tneo Tc0- Tc1  Tc,
Ta"n Patso •Tateo M-Pateo

SPnaco -T'faO T seo Paco

Figure 12: SRN model for a RB with clustered failures.

A SRN model for the RB with clustered failures and m = 1 is shown in Figure 12. We

assume that the system has one primary module and a single alternate. The structure of

this SRN is similar to that of the original SRN in Figure 8. The additional places Pcnaz and

Pcnt together with the transitions Tco, Tc1 , ... , Tc%, model the clustering in the input space.

Transitions Tco, ... , Tc7 correspond to the events where the size of the input cluster is given

by 0, ... , c" respectively. When the first datum of the input sequence that causes a clustered

failure is encountered, it causes a failure of the primary module. Thus, the immediate transition

Te0 fires, depositing a token in place Pena. Then immediate transitions Tc0 , ... , Tco, become

enabled. The weights of these transitions are given by po, ... , p,, respectively. Whenever
transition Tc fires, representing the fact that the primary module will fail for the next i,
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Figure 13: MTTF for the RB with clustered failures as a function of a.

0 < i < a, successive inputs, i tokens are deposited in place Pcnt, due to the multiple output

arcs from transitions Tc, to place Pent. At this point, transitions Tneo, Tc1 , ... , Tc,, are I
disabled by the inhibitor arcs from Pent. Thereafter, for the next i times that Tmo fires,

transition Teo will fire depositing a token in Pena. Transition Tc0 is now used to remove a I
token from Pent and starting the usual RB sequence corresponding to the case. where the first

module generates and erroneous output (token in Pateo). This firing sequence continues until

Pent is empty. To achieve this behavior, the input arc from Pent to Tco has multiplicity 1 if

#(Pcnt) > 1 and 0 otherwise.

The MTTF as a function of a is plotted in Figure 13 (the case with a = 0 corresponds to I
the RB with no clustered failures). Two different distributions are considered for p,, uniform

and truncated geometric. For the uniform distribution, Vi,0 < i < a, p, = 1/(a + 1). In I
this case, given that a failure has occurred, the probability that the next : inputs also result

in a failure of the primary is the -ame for all i (a pessimistic assumption). For the truncated

geometric distribution, Vi,0 < i < a, pi = p(1 - p)4/(1 - (1 - p)ET+i), where 0 < p < 1 (in 3
Figure 13, we set p = 0.5). The probability that the failure cluster has size i tapers off as

I
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i increases. This is more realistic than the uniform distribution. Clustered failures have a

negative impact on the reliability of the recovery block. The effect is larger with the uniform

distribution than with the truncated geometric distribution.

4.2.2 Arrivals of requests

So far, we have assumed that when the RB completes processing an input, another input value

is already waiting to be processed. We are thus assuming a 100 % utilization of the recovery

block. In reality, the input values usually arrive at random and are processed when the RB

is available. To incorporate this effect into the model, we assume a Poisson input arrival

process with rate AT,,.- We also assume that the RB has a finite buffer of size N; at any

time, no more than N inputs can be waiting for processing, including the one being processed.

This is implemented by adding two places, Penv and Pbuf, and a transition Tarr, resulting in

Figure 14. The firing of transition Tarr represents the arrival of an input datum for processing.

Whenever an input value successfully completes execution or escapes error detection, a token

is added back into place Pent; thus freeing up a buffer.

Since the RB can-it fail while it is not being used, taking into account the input arrival

process increases the time to failure. This is reflected in Figure 15, where the MTTF is

plotted as a function of the arrival rate AT.,t for the RB with 1, 2, and 3 alternate modules,

and N = 10. When AT.,r is very small, we notice that the MTTF is large. This is because

there is a greater probability of the RB being unused for longer periods of time. As AT..

increases, the MTTF approaches that of the basic system considered in the earlier section;

in fact ATarr = oo corresponds to this system. This is understandable since, when ATarT

increases, there is a greater chance of finding an input datum waiting for processing when the

RB completes processing an earlier input value.

4.3 Other extensions

The software recovery block is executed on some form of hardware platform. In the earlier

sections, we have implicitly assumed that the processor(s) on which the RB is being executed is
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Figure 14: SRN model for a RB with input arrivals.I

inherently fault free. In reality, hardware is subject to failures and can sometimes be repaired. 3
Hence, any realistic model should take into account the behavior and characteristics of the

underlying hardware such as processors and memory limitations. It is easy to extend our models

to allow for the failure/repair behavior of the processor(s) or other hardware components. This

will then allow us to carry out the combined evaluation of hardware and software.
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Figure 15: MTTF for a RB with input arrivals as a function of AT.,,.

5 Conclusions

In this paper, we presented two software modeling applications where SRNs can be effectively

used to gain insight into a problem. The first application considers a producer-consumer

tasking system with an intermediate buffer task, and studies how the performance is affected

by different selection policies when multiple tasks are ready to synchronize.

The second application studies the reliability of a recovery block scheme. The initial model

is incrementally augmented by considering the possibility of clustered failures or by taking into

account the effective arrival rate of inputs to be processed by the system.

In either model, each quantity to be computed is defined in terms of either the expected

value of a reward rate in steady-state or at a given time 0, or as the expected value of the

accumulated reward until absorption or until a given time 0. This allows extreme flexibility

while maintaning a rigorous formalization of these quantities.
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The Network Synthesis System I
Background 3
Modern weapon systems have extremely complex control, computational, and information processing
requirements. When implemented, they include tens, or even hundreds, of computers tied together in n

networks with various degrees of intimacy. The DoD is faced with the problem of declining budgets,
and the attendant reduction in both numbers of designers and numbers of engineering organizations,
at the same time that mission complexity and system complexity are increasing greatly. This implies 3
that the means must be found to greatly improve the productivity of the smaller cadre of designers
and to create increasingly more complex and high quality systems with limited budgets.

The Network Synthesis System is an integrated design automation system for performing Network I
Synthesis for specific applications. The primary objective of the Network Synthesis System is to
provide a smart designer with the tools that will enable him to mostly automatically synthesize a
network. The System would provide facilities for synthesizing and evaluating numerous alternatives. I
It would enable the automated synthesis of network solutions based totally on the requirements (e.g.,
algorithm X must execute in 90 msec) and constraints (e.g., the resulting hardware must weigh no
more than 5 lbs.) imposed by the designer. By deriving solutions from requirements and constraints, I
the System will ensure that solutions meet specifications and enable the quantification of the impact
of specification changes. Other objectives of the Network Synthesis System are involved with such
issues as Design Optimization Strategies, Validated Hardware and Software Parts Libraries, and User I
Friendly Interfaces.

A successful Network Synthesis System would be expected to reduce design time by a factor of 10 to
100. It would enable the practical development of proof-of-concept and pre-production prototypes in
an almost wholly automated way. It would reduce the risk and cost in major system development.
One could synthesize and evaluate a complex network in days with such a tool; a process that now
takes months and years.

The NSS will be developed by integrating together two existing tool sets and by providing additional
tools to support the network design process.

The two existing tool sets are: 3
1. Processing Graph Methodology (PGM)

The PGM is a tool set developed by the Naval Research Laboratory on the AN/UYS- 2 Program. I
PGM tools enable the design of an application system to be done at a high level, expressed in
graph notation, and then be translated into code strings that are executable in the functional
elements of the system. It includes a set of network level simulation tools, called PGSE, which 3
provide designers with the means for evaluating the performance of their designs. It also includes
comprehensive graph building tools.

2. Integrated Design Automation System (IDAS)

I
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IDAS is a tool set developed by JRS mostly under the sponsorship of the Tri- Services VHSIC
Program. The JRS tools include an automatically retargetable Ada Compiler, an Ada Behavioral
Specification to VHDL Structural Description Synthesizer, and various tools to assist in adapting
Ada to the special characteristics of an arbitrary embedded computer and supporting application
programmers in achieving effective results. The JRS tools are unique, particularly as they relate
to Ada and VHDL. Various Simulators are also included.

Some of the new tools to be developed include:

"* User Interface to control the design process

"* Strategies and algorithms for the various design optimizations.

"* Library Building and Managemeit Facilities for collecting, storing, and accessing relevant data.

System Summary

The Network Synthesis System (NSS) will provide a Designer with the tools and methodology needed t(,
synthesize network level systems consisting of computers of various types and capabilities (e.g., signal
processors), memories of various types and sizes, input/output elements of various types 9e.g., sensors,
displays, controls), and the communication elements of various types needed to link the pieces of a
network together in an effective manner. With the NSS, a Designer will be able to rapidly prototype
(in model form) a network and evaluate it objectively against its specifications (e.g., performance,
functionality) and constraints (e.g., limits on power, size, reliability).

The NSS will provide an integrated collection of tools to support a comprehensive design methodology,.
It will include:

"* Network Synthesis Tools

"* Processor Synthesis Tools

"* Concurrent Hardware/Software Design

"* Ada and VHDL Languages

"* Specification First Design

"* Reusable Part Libraries for both Software (Ada) and Hardware (VHDL)

"• Simulation and Evaluation Tools covering the Design Hierarchy from Networks to Components

"* Estimating Tools incorporating Rules of Thumb and Engineering Judgment

"* Physical Package Modelling, Partitioning, and Assignment

"* Integration with Lower Level Tools (e.g., Silicon Compilers)
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Network Synthesis from Specifications and Constraints I
The network synthesis process is driven by the network requirement specifications. This means that
the NSS will take, as input, a behavioral specification of the network to be synthesized and will be I
capable of automatically generating, as output, a structural description of a network that satisfies the
behavioral specification. 5
The network synthesis process is controlled by the Designer via the imposition of constraints on the
solution space available to the NSS in transforming the behavioral specifications into structural de-
scriptions. "Constraints" are to be viewed as budgets or limits. The network of interest may, for I
example, be budgeted to no more than 100 watts or a 2000 hour MTBF; it may be limited to three
computers or to only computers for which validated Ada compilers exist. These "constraints" will
directly affect the solution that is generated.

Each particular set of behavioral specifications and constraints imposed on the solution will, in general,
lead to a different solution. The comparison of the different solutions, in terms of any parameters of,
interest, is called a tradeoff. Designers perform "tradeoffs" to measure the sensitivity of some solution
parameters to changes in one or more of the behavioral specifications and constraints. They perform
"what if?" experiments. Designers will vary the specifications of the required behavior (e.g., change 5
the image processing algorithm) or modify one or more constraints (e.g., up the Power budget to 200
watts), then regenerate the solution, and then compare the solution parameters to those of other,
previously generated, solutions. Designers are generally looking to find the best solution, that satisfies
all of the requirements; a 50 watt solution is better than a 100 watt solution, even if the budget is 200
watts.

Behavioral specifications or constraints need not be complete or finished in some sense. The NSS will
generate solutions based on the inputs presented and, in fact, will not know, or be concerned with,
whether or not the inputs are correct or complete. This capability facilitates what if experiments. It is
necessary for a methodology wherein a design evolves as more knowledge of the requirements is gained I
or a design must respond to an abrupt change in specifications or constraints. It is also necessary
for a methodology that supports the concept of providing reasonable estimates of the implications of
design decisions; that is, the System will be able to objectively estimate the difference in the power I
requirement, for example, of a design implemented in GaAs versus CMOS.

The solution to a network synthesis problem is a structural network. The structural network consists
of a collection of hardware nodes, of a variety of types (e.g., computers, sensors), interconnected
with one another in some manner. A network solution is obtained when all of the nodes and all
of the interconnections are realized; realized means that hardware has been selected or designed to
implement the node or interconnection; the solution obtained must satisfy the network specifications
and constraints.

Processor Synthesis from Specifications and Constraints

In synthesizing a network, a solution will be sought that utilizes existing hardware; that is, hardware I
that is modelled and contained in a reusable parts library and for which a physical implementation
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may exist.

At times, it will be found that the requirements are such that no solution can be found when restricted
to the use of existing hardware. Then, the requirement to synthesize a new part (e.g., a computer)
might arise. In a similar vein, it may simply be of interest to explore the design space and generate
new library entries for later network problems. In either case, whether the part synthesis requirement
is generated by a network synthesis problem or by an off-line library building/validating process, a
part level synthesis tool is needed to satisfy the requirement.

The NSS provides a Processor Synthesis tool set that is driven by behavioral specifications and con-
straints. Behavioral specifications are expressed as Ada Programs. Processor synthesis results in a
solution, which is a computer description expressed in VHDL; Ada specifications to VHDL Descrip-
tions.

Processors are synthesized from parts in a library, exactly as is done for network synthesis; the parts,
at this design level, are things like ALUs, Memories, Registers, etc.

Processor synthesis includes numerous optimization elements for effecting the generation of good qual-
ity designs, not simply functionally correct ones.

Concurrent Hardware/Software Design

The NSS supports concurrent hardware/software design. It provides three main capabilities in this
regard:

" Provides facilities for performing comprehensive hardware/software tradeoffs and for measuring
the impacts of decisions objectively and quantitatively.

" Provides an automatically retargetable Ada Compiler System, that is retargeted from a descrip-
tion of a computer expressed in VHDL.

"* Provides comprehensive analysis and tracing facilities, coupled with a sophisticated User inter-
race, to allow Users to see the detailed relationship between the hardware and software. For

example, one can see detailed hardware utilization data associated with the execution of any
selected program; this would be of great interest for real time evaluations and for fault tolerance
analyses.

Together, these capabilities allow a Designer to proceed with hardware and software design and imple-
mentation concurrently. It allows for evaluation of designs almost instantanecusly (i.e., within hours)
from the time that versions are identified. It allows detailed development to start early and proceed
with confidence. Integration and testing is started immediately, not at the end of the project.
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Standards - Ada and VHDL I
The NSS utilizes Standards where ever practical in its design and developmeil 1t is anchored to the
use of Ada and VHDL.

Ada is utilized within the NSS in the conventional manner as an application programming language.
It will be used as the application programming language for all types of applications and for all types
of computers. Ada is also used as the behavioral specification language for a computer in a network;
normal, compilable and executable, Ada programs will be used for this purpose.

VHDL is used in the NSS as the language for describing hardware, at any level in the system hierarchy
from network to gate. The NSS will contain and/or generate VHDL models of networks, computers,
and lower level components. f
Specification First Design i
From a language point of view, synthesis at any design level is a process that ultimately transforms a
behavioral specification into a structural description. This implies that one should first determine what
an entity is to do (i.e., its behavioral specification) and then generate and examine alternative designs I
(i.e., solutions) that do it; this is an eminently reasonable idea. The NSS supports this methodology
very strongly.

The NSS uses Graphical Representations and Ada Programs as the primary mechanisms for expressing I
behavioral specifications.

At the network level, the NSS utilizes data flow graphs to depict the behavior and to express the
concurrency possible in the behavior. Nodes in a graph are reducible to a "primitive" level at which
the behavior of the node is expressible as an Ada Program. The network synthesis process transforms
an arbitrary behavioral network, containing an arbitrary number of primitive nodes, into a structural I
network, having a specified number of hardware nodes, of specified types, interconnected in a specified
manner. Normally, a network will exhibit concurrency of behavior on a "primitive" node level.

At the processor level, the NSS utilizes Ada Programs to depict the behavior required and to express the
concurrency possible in the behavior (as discernible in the data dependency graphs for the program).
The Ada Programs used may hae originated as primitive node specifications on the network level; if
so, the connection from network level to processor level is seamless

The primitive behaviors at the processor level are expressed as arithmetic or logical operations. These
behaviors are expressible as logic equations, truth tables, or similar representations, which can then ]
be passed to logic synthesizers for synthesis of elements like register files and RALUs.

Is
Reusable Parts - Hardware and Software

The NSS incorporates, and relies heavily on, the concept of rpusable parts. It includes libraries of
hardware elements (e.g., processors, displays, ALUs, memories) and software elements (i.e-, algorithms

4
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expressed in Ada ). It also includes "reusable data" elements that represent the relationship- b,- ' ,-V!1F parts in reusable libraries; for example, reusable data includes the execution time of atn itgoi olt
(from the reusable Ada library) on a processor (from the reuwT.hOe computer library ir, V\Ii l!L• i
data element that is maintained.

Synthesis on a network level involves reusable parts very heavily. Primitive behavioral node5 s t fr,,ni
the Ada library. Selectable computers are obtained form the VHDL library when construtittg tll
structural graph. Relational data elements are used in deciding how to a,sign behavioral nod-., to.
structural elements.

Reusable Part Libraries are conceptually very important for two other reaSons

* Provides the mechanism for enforcing "validation" of parts and the use of validated pi.t!

a Facilitates the synthesizing of parts, for all des*n levels, in a manner idependent of Iie t.-drn!l
and schedule requirements of a project. Algorithm designers, for example, could do theit thing
and deposit the results into a library off.line from any specific project

Simulation and Evaluation Tools

The NSS contains the capability to simulate and evaluate designs from the network to the .Cmpofpl#lt
level. It contains the following:

e Network Level Behavioral Simulation

• Network Level Structural Simulation

* Processor Level Software Simulation (VHDL)

e Processor RTL Level Simulation (VHDL)

e Component Level Simulation (VHDL)

These tools are tightly integrated into the design methodology and are used to generatc daa upor
which design selection and optimization decisions are made.

Estimating Tools

The NSS includes the capability of rapidly generating estimates. When performing synthesis from a
high level, network or processor, a designer will be interested in estimates of various design parameter
values that would result from alternative constraints that might be imposed. For example, the design,-r
would like to know the estimated MTBF for a given design ;n-iplemented in GaAs and Pakckaging Sch,'rn,"
1 versus CMOS and Packaging Scheme 3.
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The NSS provides rapid estimate generation based on measures of complexity and "good engin, ring I
judgment" or "rules of thumb". The capability is data driven, which means that an) organization 4)r
individual may ebtablish unique estimating factors for any combination of constraints of interest.

Physical Package Modelling, Partitioning, and Assignment g
The NSS provides the facilities for modelling a set of physical packages (e~g., chassis, board, carrier,
hybrid, IC) in terms of their capacities. It also provides the capability of partitioning an int rconnected
set of hardware components, at any structural level, into subsets that match the capacities of the
packages. Together, these capabilities provide the ability to do multilevel assignment.

Integration with Lower Level Tools

The NSS utilizes standard languages and formats to facilitate its interconnection to other tools. It has 5
been interfaced to VHDL compiler systems, a silicon compiler system, ;arious simulation tools, and
various software assemblers/linkers/loaders. It is soon to be interfaced to a MOSIS supported silicon
compiler.

I
i
i

I

I
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i Abstract

Reliability analysis of various disk array architectures (different levels of RAID) is per-
formed. The dependence of reliability and mean time to data loss on different parameters
of a disk array and support hardware components needed for correct functioning of disk
array is characterized. A study of these characteristics reveals the implications of several
design issues of a disk array on its reliability. Issues like scalability of disk arrays, imper-
fect coverage of disk failures, cold versus hot disk spares, predictive disk failures, reliability
of disk arrays for mission-critical computer systems, serial versus orthogonal placement
of support hardware with respect to disk groups, and levels of hardware redundancy are
studied.

1 Introduction

To achieve high computer systems performance, the performance of its components must

increase in proportion to each other. Unfortunately, I/O storage systems have not been able

to match the high performance of the CPUs and memories. To bridge this performance gap,

high-performance disk array architectures have been proposed. Given similar performance

and cost per megabyte, higher performance can be obtained by using an array of smaller

disks compared to a single large disk. More arms can be provided and requests that access

only a single disk can be serviced independently. Large requests that need to access several

j disks can be serviced much faster by performing data-transfer in parallel.

"This work was supported in part by the National Science Foundation under Grant CCR-9108114 and
by the Office of Naval Research under Grant N00014-91-J-4162
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However, an array of disks is more fault-prone than a single large drive. Assuming the

MTTF (mean time to failure) of a large disk drive to be the same as the MTTF of a small

disk, an array of a hundred disks would have an MTTF that is one hundredth of that of a

large drive. Even if the assumption made above is not correct, it is not hard to see that the

reliability of a disk array system can be much less than required. Failure of a disk may result

in loss or corruption of data. In many applications, data is accumulated through years of

research efforts and extensive experimentation. Loss of critical data is clearly unacceptable

as it may lead to financial loss or loss of life. Thus, the demand is to design cost-effective

disk systems which can not only deliver high-performance but also provide high reliability.

The purpose of this paper is to quantify the reliability and mean time to data loss of

disk array architectures and provide answers to important questions arising in the design of

a disk array by means of analytic models. Gibson [3], Schulze et al [15], and Patterson et al 4
[12] have analyzed reliability of different RAID architectures in terms of mean time to data

loss (MTDL). Bitton and Gray [1] have analyzed MTTF for mirrored disks. However, these I
approaches use simple approximations. The most comprehensive effort to analyze RAID

reliability in terms of different parameters is the work by Gibson and Patterson [4]. They 3,
compute MTDL for disk array models based on certain approximations. For these models,

they assume that time to failure of a group of disks is exponentially distributed. Based on

this assumption, they compute the reliability of disk arrays using the approximate value of

MTDL. Usefulness of these approximations is that MTDL and reliability can be expressed 5
in closed form.

It is easy to see that time to failure of a group of disks is not exponentially distributed
'I

even when individual disk failure times are. Moreover, the emphasis on MTDL as a metric

to evaluate the reliability of disk arrays could be misleading. The variance of time to data

loss for a typical disk array is very large and the actual time to data loss in practice may

differ significantly from the MTDL. In this paper, we develop hierarchical reliability models 5
for RAID architectures and perform exact analysis of these models. Use of hierarchical

modeling provides a better understanding of the architecture being modeled and keeps the 3
state space of models small. To make the models realistic, we take into account several

4
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factors which have hitherto not been considered, mainly, imperfect coverage of disk failures,

disk failure prediction, and the type of spares (cold or hot). Even for slightly advanced

models, dosed form solutions become very messy or impossible. Therefore we provide

numerical solutions. We emphasize reliability more than the MTDL as a metric to evaluate

different RAID architectures.

Our analysis not only provides a comparison between different disk array architectures,

but also provides answers to specific questions about disk arrays in general, such as : 1)

How reliable should each individual disk be? 2) Are disk arrays reliable enough for mission-

critical systems? 3) Should the disk spares be kept hot or cold? 4) How much redundancy

in disk spares is needed? 5) Just how small should the data reconstruction time be? 6)

Should hardware redundancy be scaled as the dimensions of disk arrays are scaled? 7) How

much better is the orthogonal placement of support hardware than serial placement? and

The rest of this paper is organized as follows. In Section 2, we describe a general

hierarchical reliability model for a general disk array architecture. This model fits several

of the disk array architectures which we briefly describe. In Section 3, we extend this model

for the architectures which rely on disk controllers for disk failure detection and location. In

Section 4, we develop reliability models for different RAID architectures with finite number

of cold and hot disk spares. In Section 5, we include support hardware components into

our model. We develop models for two different hardware organizations for RAID : serial

and orthogonal placement of support hardware with respect to disk groups. In Section 6,

numerical results obtained from the solution of these models are presented and discussed.

Finally, we present our conclusions based on these results in Section 7.

2 Fault-Tolerant Disk Array Architectures

Several fault-tolerant disk array architectures have been introduced by different researchers

using varying degrees of hardware redundancy [1, 7, 8, 9, 11, 14]. Patterson et al [11) coined

the term RAID (Redundant Array of Inexpensive Disks) for such disk array systems with

redundancy. They unified the existing disk system architectures as different levels of RAID

(levels 1,2,3,4) and proposed a new high-performance disk system architecture (RAID level
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5).

We now introduce the terminology and state the assumptions used throughout the paper.

The disk array consists of N groups of disks. Each group has D data disks and C check

disks. We assume that time to failure of each disk is exponentially distributed with mean 1/A 4
(MTTF). Failure of a single disk in a group is tolerable since lost data can be reconstructed.

Data reconstruction process consists of two steps : disk replacement and data construction

on the replaced disk. Disk replacement consists of bringing in a spare disk to replace the

failed disk. Data construction is accomplished using the data from the working disks and 4
parity information of the group. We initially assume that each group has a spare disk which

can be electronically switched in when a disk fails. We further assume that the spare disk 4
does not fail as long as it is not switched in.

However, if another disk in the same group fails while the reconstruction is underway, I
then data is lost (can not be reconstructed) and that group of disks is considered failed. We

assume that each group has its own reconstruction mechanism independent of other disks. 5
Thus, reconstruction could be carried out for more than one group at the same time. All

the disks are identical (come from the same manufacturer). Unless otherwise stated, the

data reconstruction time is assumed to be exponentially distributed with mean 1/p. Failure

of any group results in the failure of disk array so that data loss in any group constitutes

the failure of disk array.

We define data-reliability as the probability that no data loss occurs until time t. Thus,

data-reliability is same as the reliability of disk array and it is expressed as a function of

time t. Based on these assumptions, we construct a two-level hierarchical reliability model

for a general disk array architecture as described in [6]. The reliability of the disk array is

modeled by a reliability block diagram (RBD) shown in Figure 1. This upper level model

has a series structure. Each block represents a group of disks. Unitl Section 5, we assume

that groups behave independently of each other. If Ri(t) is the reliability of group i, then

reliability of the disk array is given by :

Rdo(t) = l ( (1)

To compute the reliability of a group, we use a simple Markov model shown in Figure 2.
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Figure 1: Reliability block diagram for RAID

(D + C)Ap (D + C - 1)A

(D + C)A(1- p)

Figure 2: Markov reliability model for a single group of disks (RAID-1,2,3,4,5)

In state 2, all the disks in a group are operational. After one of the disks fails, system

state changes from 2 to 1 and data reconstruction is initiated. However, the disk array

keeps functioning since data is available. If any other disk in the group fails before the

reconstruction is completed, then data is lost and the disk array is considered failed. State

0 is the group failed state.

Note that we allow imperfect coverage of faults. A fault in a disk is covered with

probability p and not covered with probability 1 - p. An uncovered fault in a group causes

data loss. Bit errors that are not detected, not corrected, or miscorrected are manifestations

of what we call uncovered faults. These faults may occur due to some fault within the

error-correcting code (ECC) or if ECC is not properly invoked when an error is detected.

Moreover, ECC can correct only single bit errors. Occurrence of multiple bit errors (which

may happen due to some extraneous electric signal), are accounted for by imperfect coverage.

Failures in support hardware (e.g., failure of cooling equipment) may cause an unrecoverable

failure in a disk. Some disk array architectures rely on the array controller's ability to
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detect disk failures. Failure of the disk controller mechanism to detect a disk failure is also S
considered an uncovered failure. Imperfect coverage also accounts for catastrophic failures U
due to extreme environmental conditions.

The reliability of any group Gi is given by: I
Ri(t) = Aleolt + A2 eflt , (2)

where I
S-(u + (2D +2C- 1)A) + \/A+-+s 2 + Ap((4D + 4C)p- 2)

2 '

-(ii + (2D + 2C - 1)A)- \/A2 + y2 + Aji((4D + 4C)p- 2)
f12 2

A1 , ((D+C)(1+p) -)A+jA+ #I
01-0

A2 ((D+C)(1+p)-- 1)1\A+/ + 2  (3)

The reliability of the disk array is given by Equation 1. Mean time to data loss for a group
of disks is :

MTDL, = IA + ((D + C)(1 + p) - 1)A 
(4)

(D + C)A(p(1-p) + (D + C- 1)A)(

The mean time to data loss for the disk array is given by :I
00O N (ý)AljA2 N-j

MTDLda = Rda(t)dt = E J(N) -A"N(5
JO ~~j=o,0i+02N-j

2.1 RAID-1 (Mirrored Disks)

Mirroring is the traditional approach to improve the reliability of disk systems. Bitton

and Gray [1] introduced the concept of disk shadowing in which a shadow set of k disks I
(i.e., k identical copies of same data) are maintained. This set can support k reads in

parallel assuming parallel data paths and enough disk controllers (thus effectively increasing

the read rate by a factor of k). A write is performed in parallel over k disks (thereby

maintaining a write rate of single disk). We concern ourselves with the case where k = 2. 3
This configuration is also known as disk duplexing or mirroring.

If the storagP capacity of the system requires N disks, then 2N disks are used in a I
duplex system. This is the most expensive of the different RAID architectures. It is also p
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significantly different from the rest of RAID architectures. Each pair of mirrored disks

forms a group. If one of the disks in a group fails, the-, a spare is switched in. The data

reconstruction consists of copying the data onto the spare from the other working disk. For

the case of RAID-i, we substitute D = 1 and C = 1 in Equations 1 - 5.

2.2 RAID-2

In this scheme, each group has D data disks and C (where C > log2(D + C + 1)) check

disks [5]. The check disks can correct single bit errors and detect double bit errors. A single

failure of any disk in a group is tolerable. An uncovered fault or failure of two or more disks

causes data loss. Substituting the appropriate values of D and C in Equations 1 - 5 yield

the reliability and MTDL for this organization for RAID.

2.3 RAID-3,4,5

The C check disks for D data disks in RAID-2 are basically needed to detect the incorrect

bit position. Once the incorrect bit has been identified, then a single parity bit suffices for

correction (reconstruction) of data which would otherwise be permanently lost. in RAID

levels 3,4, and 5, the ability of the disk controller to detect a failed disk is utilized. Thus, we

need only one check disk per group since the disk controller identifies the failed bit position.

A RAID-3 architecture was proposed by Park and Balasubramaniam [10] and a RAID-4

architecture was proposed in [14]. RAID-4 differs from RAID-3 in that the data is inter-

leaved between disks at sector level. In RAID-3, data is interleaved at bit level. Thus, in

RAID-4, an I/O transfer is spread across all the disks within a group. Whereas RAID-3

allows only one I/O transfer per unit time per group, RAID-4 allows parallel transfers from

"a group. However, only the reads are parallelized. Writes are limited to one per group at

"a time since every write request results in a read and write to the parity disk. Therefore,

RAID-4 results in improved performance for reads.

To parallelize writes, RAID-5 architecture was proposed by Patterson et al [11]. In this

scheme, parity information is spread across all the disks within a group (rotated parity).

This scheme results in improved performance for reads as well as writes. However, the

reliability models for RAID-3, RAID-4, and RAID-5 are identical since they all require only
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one check disk. Substituting C = 1 in Equations 1 - 5 yields the desired results for reliability

and MTDL.

3 Predictive Disk Failures I
RAID-3,4, and 5 rely on the disk controller's ability to correctly predict the disk failures

before they occur. Some implementations utilize this property to prevent data loss and 5
reduce the reconstruction time. We modify our earlier model to account for these new

features. We assume that no loss of data occurs if the disk controller correctly predicts 5
an impending disk failure. We further assume that the spare is electronically switched in

and data copied onto the spare before the failing disk is powered down. This sequence of Q
operations does not result in a change of state of the system. However, the disk controller

may not always be able to predict a disk failure. Failures resulting from uncovered faults 5
are not predictable. With probability (1 - a), an impending failure due to a covered fault

is not predicted. g
There is also the possibility of false alarms when the disk controller erroneously predicts

a disk failure. The time to next false alarm is assumed to be exponentially distributed with j
rate -y. However, false alarms are treated as correctly predicted failures and do not result

in a change in system state. This is because we assume unlimited supply of disk spares. t,

However, it does result in monetary loss since a false alarm results in undue consumption of

disk spares. In a later section, when we consider finite number of spares, this effect of false

alarms is clear. The Markov reliability model based on these assumptions for each group is

shown in Figure 3. 3
The reliability of each group has the same form as Equation 2 where

--(((D + C)(2 - pa) - 1)A + IL) + v3X ,

2

,2 -(((D + C)(2 - pa) - 1)A + ,u) -

A Ih + + (D + C - 1)A
A1 -

AA2  2 + ' + (D + C - 1)A_
,3-01
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(D + C)Ap(l -a) (D + C - 1)A

(D + C)A(1- p)

Figure 3: Markov reliability model of a group of disks with predictive failures (RAID-3,4,5)

X = ((D + C)((D + C)p 2 a 2 + -2pa) + 1)A 2 + A2 +

2((D + C)p(2 - a) - 1)A)I.

Mean time to data loss for a group of disks is given by:

MTDL, - + ((D + C)(1 + p(1 - a)) - 1)A (6)

(D + C)A(A(l - p) + (D + C- 1)(I - a)A)

The reliability block diagram for the disk array is the same as shown in Figure 1. The

reliability of the disk array is computed by Equation 1 and MTDL for the disk array is

computed as in Equation 5.

4 Cold Disk Spares Versus Hot Disk Spares

In the earlier sections, we assumed unlimited supply of disk spares that did not fail. In

reality, however, a fixed number of spares is maintained. The disk spares could be main-

tained hot or cold. A hot disk spare can fail even though it is not in active use. A cold

disk spare does not fail unless it is switched in as a replacement for a failed disk. A hot

spare can be switched in electronically after a disk fails and the time to perform the switch-

in is negligible. Hence the effective data reconstruction time in this case consists only of

constructing data on the spare disk. The disadvantages of hot disk spares are : 1) The

automated switch-in mechanism adds to the cost overhead, 2) Spares can fail while not in

active use, and 3) The hardware used to carry out spare switch-in may fail (these failures

can be accounted for by the coverage probability).
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Ato A

to A to A to A

Figure 4: Reliability model of a group of disks with M cold spares (RAID-1,2) I
The other option is to maintain cold disk spares. When a disk fails, typically a repair-

person is called to install a spare. After installation, the disk reconfiguration and data

reconstruction begins. Thus the total repair-time increases. A better solution perhaps is

a combination of two approaches. Few hot spares could be maintained, while the rest are

kept cold. Each time a disk fails, a hot spare is used up and a cold spare is made hot. 5
If a disk fails after all the spares are exhausted, then a new disk is ordered from the

manufacturer. This increases the data reconstruction time. In practice, this could be 3
avoided by always maintaining a minimum number of spares. Each time the number of

available spares falls below this minimum, new disks can be ordered from the manufacturer.

This scenario well approximates the case of unlimited spares. Maintaining spares (hot or

cold) is a cost overhead. Some users may prefer not to maintain any spares. This strategy 3
could result in savings depending upon several factors including loss of revenue while data

reconstruction takes place and the reliability and availability desired. If disk spares are 3
maintained, then the question arises as to how many spares should be kept ? Intuitively, it

4
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is clear that if there are small number of groups each containing a large number of disks.

then number of spares per group should be large, However, if there are a large number of

gr.-,-ps each containing a small number of disks. then number of spares per group should

be small.

In this Section, we develop reliability models for diffe:entI RAID architectures based

upon different assumptions. Assume that each group has M spare disks. Assume that

for hot disk spares, the time to switch in a spare is negligible. Let us first considr the

reliability model of a group of disks with Al cold spares for RAID-l,2 (Figure 4). A state is

a two-tuple (i,j) where i is the number of active disks (operational data and check disks)

and j is the number of disk spares left. State A is the group failed state. In this model,

G = D + C, the number of active disks, A1 = (D + C)Adp where Ad is the failure rate of a

disk in active use, A4 = (D+C-1)Ad, and A3 = (D+C)Ad(1-p). The transitions with rate

A4 are transitions representing failure of a disk during data-reconstruction which results in
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data loss. Transitions with rate A3 represent uncovered failure. Transitions with rate A,

represent covered failure of a disk. Rate of data-reconstruction is p.a as long as at least one

disk spare is available. In state (G,O), all the spares are exhausted. If a disk fails in this

state, the data-reconstruction rate is t4 where /2 < 13 because mean data-reconstructiOR I
time increases.

In case of RAID-3,4,5 with cold spares, the reliability model is shown in Figure 5. Here

A2 = (D + C)Adpa + -f and A, = (D + C)Adp(I - a) where a and -y are the same as defined

in Section 3. Assum. that data-reconstruction time for correctly predicted failures and false 5
alarms is negligible. A spare is installed before the failing disk is powered down. Thus, these

transitions result only in a state change reflecting the decrease in the number of available 5
spares by one. The rates A3 , A4,A3, and it,2 are same as the previous model.

Let us now consider reliability model for RAID-3,4,5 with hot spares (Figure 6). lhi 5
model differs from the earlier model in that there are transitions from states (G - 1, Af - I + I

to states (G - 1, M - i) (i = 1, AM) signifying the failure of hot disk spares. This also g
changes the transition rates from states (G, AM- I + 1) to (G, A - 0) (where i = 1, Al). Rate

A, . = iA51, + (D + C)AdpO + I where Ap is the failure rate of a hot disk spare and A,p < Ad.

Data-reconstruction rate while at least one spare is available is p, and p2 < pi, In case of

RAID-l,2 with hot spares, the reliability model remains the same but the transition rates

change. Particularly, A, = (D + C)Adp and A,,i = iAm.

5 Reliability Model of RAID with Support Hardware I
A disk array system has many hardware components that are needed for proper functioning

of the disk array. These include host bus adaptor (HBA), disk array controller (DC), nard

disk drive (HDD) controller, single board controller (SBC) (track buffer and error correction 3
circuitry (ECC) are resident in SBC), cooling hardware, and power supply etc. So far we

have considered only the disks in the reliability models of disk arrays (coverage probability

accounted for failure of some support hardware components though). Schulze et al [I5) have

shown that failures of the support hardware considerably reduces the overall reliability of 5
a disk array. In fact, failure of some of the support hardware components may result in

4
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Figure 6: Reliability model of a group of disks with M hot spares

data loss. For instance, failure of cooling equipment may result in data corruption in disks

and failure of power supply may result in data loss. In this Section, we model failure-repair

behavior of support hardware components on reliability of disk array. We consider two

hardware organizational schemes.

5.1 Serial Placement of Support Hardware

This is a simple organizational scheme in which the disk array has a set of associated hard-

ware components (HBA, power supply (PS), cooling fans (CF), JIDD, SBC, disk controller

etc.). These components are placed serially with the disk array. If there is no redundancy

in these components, then failure of any of these components results in the failure of the

disk array. If there is redundancy, then failures of some of these components can be toler-

ated and failed components may be repaired or replaced. However, the placement is serial

and if any component were to stop functioning despite the redundancy, the disk array is

considered failed. The two-stage hierarchical reliability model is shown in Figure 7. The
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Figure 7: RAID organization with serial placement of support hardware I

RBD is a simple extension of RBD shown in Figure 1. The reliability of the disk array is 3
now given by :

N3
Rda(t) = (IJ Ri(t))Rhb.(t)RdC(t)Rsbc(t)Rps(t)Rcj(t) (7)

i= 3

Depending upon the number of redundant spares of each component, the reliability

model for each component is different. We show Markov reliability models for components

with no redundancy, dual redundancy, and triple redundancy. These models are easily

extended to higher levels of redundancy. In each of these models, A is the failure rate of the

component, p is the repair rate, and c is the coverage probability. We assume hot spares

for hardware components which fail at the same rate A. g
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5.2 Orthogonal Placement of Support Hardware

Schulze et al [15] proposed an organizational scheme for placement of disks and the support

hardware in a way that makes disk arrays more fault-tolerant. The disks are organized in

a two dimensional grid with each row representing a parity group of disks. In RAID, each

parity group can tolerate single disk failures. Support hardware (power supply, cooling

fans, HBA, etc.) is provided for each column of disks. Thus, each column forms a support

hardware group. This organization is shown in Figure 8. This orthogonal placement of

parity groups against support hardware groups provides fault-tolerance against failure of

support hardware components. Disk array is operational even if all the disks in a column

group or any support hardware components along a column fail. However, disk array in this

case is more expensive than the serial organization because of large number of associated

hardware components.

In [151, an approximate estimate for the MTTF of a disk array organized in this manner

is provided. Due to complex dependence of failure and data-reconstruction in this RAID

organization, a simple reliability model can not be developed. We developed a reliability

model using stochastic Petri nets but it resulted in a very large Markov chain. The symmetry

in this model prompted us to develop a smaller approximate model. The approximate model

is obtained by essentially lumping identical states into one state. The approximate Markov

model has only four states and yielded solutions that were close to the solutions obtained

using the exact model.

The approximate model is shown in Figure 9. State 2 is the fully operational state of the

disk array with no disk or hardware component failed. Assume that all the support hardware

components are statistically independent and identical across different columns. Failure of

any support hardware component in a column causes the entire column to fail. Assuming

exponential time to failure distribution for each of the support hardware component, the

failure rate of each hardware column A5h is the surn of failure rate of each component (CF,

PS, HBA, DC, etc.) and time to failure distribution of each hardware column is exponential

with this rate [16]. In state 2, one of the hardware columns may fail (transition to state

1) and it is repaired at rate Ash. For the lack of real data, we assume that each hardware
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(N - 1)(D + C)Ad+

N(D + C)Adpt (D + C - 1)A~h
(D±C( c )•• •

(D + C)lah(1 - ph) + N(D + C)d(1 - Pd)

Figure ": Approximate reliability model for orthogonal RAID-1,2,3,4,5

component has tle same MTTR. If this is not the case, then simple extensions to the

reliability model can be made by introducing different failure states for failures of different

hardware components and their repair.

A failure in a hardware column is covered with probability PAh. An uncovered failure

causes the disk a-ray to fail. While the repair is underway, the disks in this column are

considered unope -ational. However, if any of the remaining (N - 1)(D + C) disks fails or

if any of other cu'umn hardware groups fail before the repair is completed, then data loss

occurs (transition to failed state 0). Similarly:, in state 2, any of the N(D+C) disks may fail

(Ad is the disk failure rate) (transition to state 1). A disk failure is covered with probability

Pd. An uncovered disk failure causes data loss. Data-reconstruction rate is Ad- If any of the

other disks in this group fail or if any of the other hardware column groups fail before the

data-reconstruction is completed, then data loss occurs.

6 Numerical Results

We conducted several experiments with the models described in previous sections. It is

hard to compare the different levels of RAID because it is not quite clear, for example, what

489



I
I

constitutes an equivalent RAID-1 organization given a RAID-5 organization. We designed

our models assuming a required storage capacity of the disk array (32 disks). We also

assume that each level of RAID uses identical disks (same capacity and same mean time to

failure) which presumably come from the same manufacturer. Given these assumptions, we

stress that the reader should lay emphasis on the characteristics of individual curves (each

curve corresponds to a RAID level) and not on comparing different curves on the same plot.

For instance, given a RAID-5 with 16 groups of 16 data disks each, its equivalent RAID-1

would have 256 data disks and 256 mirrored disks of same capacity. This is exorbitantly

redundant. A system designer would rather implement a RAID-1 architecture with 8 data

disks of larger capacity.

The base model we use for RAID-1 has 32 data disks and 32 mirrored disks. For RAID-

2, the model has 8 groups each consisting of 4 data disks and 3 check disks. For RAID-3,

4, and 5, the base model has 8 groups of 4 data disks and 1 check disk. The numerical

values of some of the model parameters are chosen based upon the data given in [11, 15].

The time to failure of an active disk (data and check disks) is exponentially distributed

with mean 40000 hours (A = 1/40000 per hour). We assume the distribution of time to

data reconstruction is exponential with rate A. If hot disk spares are maintained, mean

data-reconstruction time is 2 hours (p = 1/2 per hour). If cold disk spares are maintained,

then mean data-reconstruction time is 50 hours. If no disk spares are maintained, then

mean data-reconstruction time is 74 hours. Failure rate of a hot spare disk is \,P = 1/50000

per hour. The coverage probability in each case is assumed to be 0.9

In models with predictive disk failures, rate of false alarm is chosen to be 7 = 1/100000

per hour and probability that an impending failure is correctly predicted is chosen to be

a = 0.9. For models with support hardware components, we have from the data provided in

[15], MTTF for power supply = 1460 hours, HBA = 123000 hours, power cable = 10000000

hours, SCSI cable = 21000000 hours, cooling equipment = 195000 hours, SBC = 40000 hours

and HDD controller = 30000 hours. We take mean repair time for any support hardware

component (also MTTR for any support hardware column) to be 24 hours (ph = 1/24 per

hour).
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All these two-level hierarchical Markov models were solved using the software package

SHARPE [13].

6.1 How reliable should each disk be?

The two-level hierarchical model composed of submodels shown in Figures 1 and 2 (RAID-

1,2) or 3 (RAID-3,4,5), was solved. Assume that hot disk spares are maintained in each

case and a spare is available each time a disk fails. Figure 10 shows how the reliability

(evaluated at t = 1000 hour) of various disk array architectures varies as MTTF of a single

disk increases. The reliability gain is significant as MTTF of each disk is increased from

10000 hours to 40000 hours. However, the gain in reliability is not much as MTTF of a disk

is increased beyond 40000 hours.

6.2 Are RAID architectures reliable enough for mission-critical systems?

Once again, the same two-level hierarchical models as the earlier experiment are solved. In

Figure 11, reliability of the disk array is plotted as a function of mission time. Disk arrays

are highly reliable for operation period of 500 hours or less. However, for mission-critical
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systems with long mission times, we see that different disk array architectures with the

given amount of redundancy are not very reliable. Note that in these models, we have not 3
taken into account the reliability of support hardware which decreases the reliability of disk

array. 3
6.3 How much does improved coverage of disk failures help?

We solved two-level hierarchical model composed of submodels shown in Figure 1 and 2

(RAID-2) or 3 (RAID-3,4,5). In Figure 12, reliability of the disk array (at t = 1000 hours)

is plotted as a function of coverage probability. Tremendous improvement in reliability is

achieved with improved coverage of disk failures. Whereas it is impossible to get rid of

catastrophic failures, it is possible to improve the reliability of support hardware, ECC,

and disk controllers by introducing redundancy. It should be noted that coverage proba-

bility may well depend upon the RAID architecture. It can be argued that RAID-1 will

hiave higher coverage probability than RAID-3,4,5, because error detection and correction 3
strategy of RAID-3,4,5 is more prone to uncovered failures.

i
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6.4 How low should the data-reconstruction time be?

Let us now consider the effect of mean time to data-reconstruction (MTDR) on disk array

reliability. The two-level hierarchical model composed of submodels shown in Figures 1

and 2 (RAID-1,2) or 3 (RAID-3,4,5) was solved. The plots in Figure 13 show that data-

reconstruction time does not significantly affect the reliability of disk system. Reliability

is evaluated at time t = 1000 hours. Varying MTDR from 2 hours to 100 hours did

not change disk array reliability much. The reason for this is because the MTTF of a

disk is much larger than MTDR (mean time to data-reconstruction) of disk. Thus, taking

expensive measures to reduce the data-reconstruction time would not yield significant gains.

The virtual independence of array reliability on data-reconstruction time suggests the use

of cold disk spares over hot disk spares. Hot spares are prone to failure just like data disks,

but cold spares do not fail. Besides, it is more expensive to maintain hot spares than cold

spares. However, depending upon tho application, it may be useful for a variety of reasons

(loss of revenue, user requirements etc.) to minimize the data-reconstruction time.
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6.5 How many disk spares are needed?

In the previous models, we assumed unlimited number of hot disk spares were maintained. 5
In 3ection 4, we saw that with some data-reconstruction cost overhead, it is possible to

ensure approximately permanent availability of a disk spare. In this section, we analyze I
the dependence of array reliability on the number of spares and the kind of spares (hot

or cold). We solved the two-level hierarchical model composed of models shown in Figure 5
1 and 4. (RAID-1,2 with cold disk spares) or 5 (RAID-3,4,5 with cold disk spares) or 6

(RAID-1,2,3,4,5 with hot disk spares) to analyze the dependence of MTDL on the number I
of spares.

In these modets, we choose A3 = 1/50.0 per hour (data-reconstruction rate when a 3
cold spare is available), A2 = 1/74.0 per hour (data-reconstruction rate when no spares are

available), and p1 = 1/2.0 per hour (data-reconstruction rate when a hot spare is available 3
on site). The MTTF of a hot disk spare is taken to be 50000.0 hours (A.p = 1/50000.0 per

hour), which is larger than the MTTF of an active disk (= 40000.0 hours). 3
For RAID-3,4,5, MTDL of disk array as a function of number of spares (cold and hot)

4
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is increased from zero to three is plotted in Figure 14. The relative gain in MTDL is not

much supporting the results of section 6.4. The absolute gain in MTDL is not much as

the number of spares is increased beyond two per group. Similar trends are observed for

RAID-1 and RAID-2.

6.6 Is RAID reliability scalable?

A natural step towards more parallelism in i/O transfers would be to scale the disk arrays

in two dimensions. One is to increase the number of disks in a group and the other is to

increase the number of groups (or both). The other reason to scale disk arrays could be

simply an increased demand on storage capacity. We wish to find out if the reliability of

the disk arrays scales appropriately or not. RAID-I architecture is obviously not scalable.

Increasing the number of disks reduces array reliability and MTDL. Moreover, it is not cost

effective to duplicate all the disks in the system if we intend to use over 100 small disks.

Thus, for RAID-1 architecture, the number of disks should be kept small and the size of

each disk should be increased. Important thing to remember is that MTTF of a large disk is
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not significantly lower compared to MTTF of a small disk. Thus, the above solution yields 1

"a more reliable design of RAID-1. £
Given the storage capacity for RAID-2,3,4, and 5, the choice of number of data disks in

"a group and number of groups is dictated mainly by performance considerations (e.g., the I
amount of parallelism in I/O transfers) and support hardware available (e.g., the number of

I/O channels, array controllers etc.). We illustrate how these choices affect array reliability.

The two-level hierarchical model solved in this case is composed of submodels shown in

Figures 1 and 2 (RAID-2) or 3 (RAID-3,4,5). 3
Given a fixed number of disks in a group (D = 8), the number of groups is varied.

Figure 15 illustrates how reliability decreases as N increases. Next, given a fixed number

of groups (N = 8), the number of disks in a group (D) is varied. Figure 16 shows how

reliability decreases with increase in D. Reliability in both the cases is evaluated at time t 1

= 1000 hours. These plots reveal that reliability of all the RAID architectures falls below

acceptable levels as the disk arrays are scaled up in dimensions. A simple solution is to

scale the redundancy in hardware as the dimensions of a disk array are scaled. Another

solution would be to come up with newer designs of RAID with more fault-tolerance like I
the one suggested in [2].

6.7 How much do we gain by orthogonal placement of support hardware? 3
We now analyze the gains in reliability due to orthogonal placement of support hardware

components over the serial placement. Assume that there is no hardware redundancy in I
either organization. For serial organization, the two-level hierarchical model composed of

submodels shown in Figures 7 and 2 (RAID-1,2) or 3 (RAID-3,4,5) is solved. For orthogonal I
organization, the me. zA1 shown in Figure 9 is solved. The array reliability is plotted as a

function of time in Figure J '. I
Comparing the two curves (eg., RAID-I (srl) and RAID-1 (otg)), we find that orthogonal

placement of support hardware improves array reliability. A key pattern to note is that for I
orthogonal organization, RAID-1 architecture has higher reliability than RAID-3,4,5 or I
RAID-2 (as opposed to all the earlier plots). This happens because there are only two

I
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hardware columns in RAID-1. Thus, RAID-I benefits the most from orthogonal placement

as far as improvement in reliability is concerned. Moreover, the overhead cost due to

multiple support hardware components (one for each column) of RAID-I is the least among

different RAID organizations. In serial placement of hardware, the reliabilities of different

RAID architectures are almost the same. This happens because of the very small MITTI

of support hardware (- 1460 hours) compared with the MTTF of disks. 5
7 Conclusion

We have carried out reliability analysis of different fault-tolerant disk array architectures

classified as different levels of RAID. The reliability models formally capture the operational 3
dependency of disk array system on array organization and support hardware. Solution

of these models provides useful insight into the dependence of disk array reliability or, 3
parameters such as MTTF of disks, mean data-reconstruction time, coverage of failts, and

dimensions of disk arrays. 3
If the disk array is intended for a mission-critical application with long mission times,

I
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then it must possess high reliability over a long period of time. Our results show that

none of the RAID architectures meet the ultra-high reliability requirements in their present

implementation. However, introduction of additional redundancy for key components may

help achieve desired reliability. If the MTTF of a single disk is increased beyond a certain

value, the gains in disk array reliability are not significant. Thus, ultra-reliable individual

disks are not the solution for ultra-reliable disk arrays. Reducing data-reconstruction time

does not yield significant array reliability gain either. However, tremendous improvement

in disk array reliability can be obtained with improved coverage of faults (i.e., improved

fault-detection and more reliable support hardware). Thus, the key to improving disk array

reliability is superior fault coverage. Dimensional scaling of disk arrays results in reliability

degradation. Therefore, hardware redundancy must be scaled as the dimensions of disk

arrays are scaled to maintain high reliability.

If reliability of support hardware (Power supply, cooling hardware, array controller.

host bus adaptor etc.) is taken into account, then overall reliability of disk array decreases.

Orthogonal placement of support hardware increases the overhead cost but significantly

improves the reliability. The power supply is the bottleneck of support hardware reliability

and therefore of disk array reliability. The best gains in reliability are achieved if repair

times for support hardware are reduced. One way of achieving this is to maintain spares

for each component.

We expect th(;- models and results to be useful to designers of disk array architectures

during the design as well as operational stages since these models reveal the bottlenecks

in array reliability. Appropriate steps could be taken either by modifying the array design

during the design stages or by introducing additional hardware redundancy if the system

is already in operation. Given specified reliability requirements, these models also test

whether a given disk array architecture meets those specifications or not.
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RAPID PROTOTYPING

Janet Y. Higgins
Naval Surface Warfare Center, Dahlgren Division

Silver Spring, MD 20903-5000

INTRODUCTION

Navy systems are becoming increasingly complex. Development
of these systems will require changing the methods by which these
systems are designed. This change should include the integration
of prototyping into the entire design cycle. Currently,
prototyping is often delayed until many critical design decisions
have been constrained. This leads to inferior systems because
many of these design decisions were not optimal. Through the
integration of prototyping into the design cycle, the system
designer has increased capabilities to check the feasibility of
specifications and requirements, compare the performance of
alternate design choices through trade-off analysis of hardware,
software, or humanware implementations, or to consider the
performance of different algorithms. Rapid prototyping is
necessary for prototyping to be a practical aid in the design
cycle.

PROTOTYPING USEFULNESS

There are two major reasons for prototype development: to
demonstrate proof-of-concept for high risk sections of a system
and to assist in the development of the final product.
Successful integration of prototyping into the system design
process requires that system designers and management understand
the differences between these two purposes.

The proof-of-concept prototype is usually classified as a
"throw-away" prototype. It is developed to answer questions
about one particular high-risk section of a project. In general,
as shown in figure 1, the greater the risk associated with the
prototype, the more likely the prototype will be thrown away.
This prototype aids the developers either in determining the
feasibility of an approach or by allowing exploration of the best
method by which to solve a problem. Proof-of-concept prototyping
must be done early in the design cycle because the answers it
provides will usually drastically shape the final system. Also,
the proof-of-concept prototype can show the proposed system is
not feasible and thus signify that a major review of the system
concept is required. Two dangers affect the development of the
proof-of-concept prototype. First, management may oppose the
expenditure of resources to develop a prototype which will be
thrown away. This view deprives the developers of the knowledge
and experience gained through proof-of-concept development.
Secondly, management and designers may be tempted to incorporate
the prototype into the final product. However, proof-of-concept
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Characterizing Prototyping Processes 3

A Dimension: Degree of Experimental Intent

Interrogative

Production Intent

Proportion Intent
Of Intent 3

elI - Understood Domain

III- Understood Domain

A process producing
a precedented system

An 'evolutionary A 'throw-away'
prototyping process prototyping process

Figure 1. (Proceedings: Spring 1992 Prototech Community Meeting) 3
prototypes are generally not designed for maintainability, fault-
tolerance, reliability, or security. 3

Those prototypes which aid in the development of the final
product are usually classified as "evolutionary" because they
often gradually evolve into the product. Early in the design
cycle, they can clarify requirements, determine the sufficiency
of the requirements, and facilitate communication between system
designers and management. Later in the design cycle, they can
allow trade-off analysis between different $2sign decisions.
Finally, once portions of the system are implemented, these
portions can often be •ntegrated into the prototype to allow
better performance measurement and prediction. Communication, I
trade-off analysis, and performance measurements are some of the
major strengths of evolutionary prototyping. Caution must be
used; however, to insure that the system is designed for
maintainability, fault-tolerance, and reliability.

PROTOTYPING APPROACHES 3
To meet the purposes of proof-of-concept and product

development prototypes, several different approaches have 3
emerged. Examples of products are described to illustrate the
different prototyping approaches. For certain approaches, many
other similar products also exist other than those de~cribed. 5
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Simulation - Simulation uses software to model components of the
system. These components can be hardware, software, or
humanware. Simulation provides an ability to measure
performance, perform rapid trade-off analysis, and integrate
actual pieces of software as they a'e developed. Disadvantages
of simulation are 'itat large development efforts can be required,
fairly detailed designs can be required, and actual hardware
usually can not be used.

iDAS - Integrated Design Automation System, JRS Research
Laboratories, Inc. IDAS provides the tools necessary to map a
particular program onto a given architecture,to measure the
quality of that mapping, and to detect where and under what
conditions that mapping fails to be optimum. IDAS provides quick
and efficient evaluation of design alternatives, execution of
desired benchmarks on simulators customized for specific machine
designs, and allows the designer to iteratively improve that
design until the desired level of near optimum solution has been
reached. From this architecture, trade-off analysis can be
performed to determine an architecture which satisfies non-
functional restraints such as size, cost, weight, and power.'

SES Workbench - This product allows a system to be modeled
as a collection of components such as processors, resources, and
delays. From this system, information such as timing, resource
contention, and program design can be obtained. It provides the
ability to perform rapid trade-offs in components and in their
configuration.2

Prototypinc languages - These languages provide the designer with
the ability to work at a higher level of abstraction than
previously available to describe their domain. Much research is
being done to develop the higher level prototyping languages.
The hardware description languages are well defined and in use;
whereas, Proteus and other high-level prototyping languages are
still in the experimental stage.

VHDL - VHSIC hardware description language supports the
design, description, and efficient simulation of VHSIC
components. Its ability to describe hardware at various
abstractions from the high-level, systems-oriented view down to
the gate level make it appropriate for prototyping. VHDL is the
DOD standard for describing VHSIC hardware. 3

Verilog - This is an alternate VHSIC hardware description
language. Similar to VHDL, it is becoming popular in the
development of commercial products.

Proteus - Proteus provides an extensible set of high-level
architecture-independent primitives for parallel and distributed
computation; a data model supporting algebraic specification; and
an identification of specifications and types which supports
object-oriented notions of subtyping and inheritance. It

505



U
I

provides a formal concept of module refinement whose
implementation supports both the evolutionary model of software
development, through the refinement of control and data- U
abstractions to improve the efficiency of early prototypes, as
well as architectural targeting by refining architecture-
independent prototypes into restricted forms targeting execution
on specific parallel platforms. 4

Software/hardware module interconnection schemes - This approach 5
is based on maintaining a library of components and having the
ability to connect them together to form the system. This is one
of the principal areas of prototyping research. 3

CAPS - Computer-Aided Prototyping System, Naval Postgraduate
school. The CAPS method uses a prototyping language to design a
hierarchical system structure with real-time and control
annotations and automatic code generation torether with reusable

components to produce executable prototypes.

PERTS - A Prototyping Environment for Real-Time Systems, I
University of Illinois. PERTS will provide an environment for
the use and evaluation of new design approaches, for
experimentation with alternative system building blocks, and for
the analysis and performance profiling of prototype real-time
systems. 3

NSS - Network Synthesis System, JRS Research, Inc. This
tool provides the ability to rapidly prototype a network and
evaluate it against its specifications and constraints. The tool
will rely on a reusable parts library for both software (Ada) and
Hardware (VHDL) .7

User interface developers - Environments which support user-
friendly interface development are extremely important for
communication between the designer and management. A generally I
accepted practice is for designers and management to walk-through
the user interface screens before much of the functionality has
been implemented. At these walk-throughs, errors in requirements
or requirement understanding are often detected. Many commercial
products exist which support user interface development. I

RESEARCH AREAS

Although many promising approaches to prototyping are
currently available, there remain many critical technologies
which must be developed in order to comprehensively support the
design cycle. Some of these areas are listed below.

Module Interconnection Formalisms - These formalisms will allow
the development and management of software databases and the
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mechanism for interconnecting existing software independent of
the language used to implement it, the platform it runs on, or
the communication media available to access it. With the many
research efforts emphasizing prototyping through module
interconnection, it is important for these formalisms to be
developed and adopted in the near future. Currently, the DARPA
Prototech community is investing this issue. 8

Information Abstraction - To allow analysis at a high-level and
simplify lower level analysis, information is abstracted away.
This presents a danger that the information will lose its
identification with reality. Without the ability to reference
reality, the validity of the prototype is difficult to determine
because it is no longer possible to determine the validity of the
initial information. Also, information abstraction currently
hides timing and resource utilization information limiting the
usefulness of prototyping to complex, real-time applications. 9

Prototype migration - Current techniques do not permit the
migration of one design phase prototype to the next phase. This
limits the integration of prototyping in th: design process
because of the effort required to prototype at each stage and the
inability to support a spiral design cycle since information can
not easily be passed between phases.

CONCLUSIONS

Future Navy systems will require a departure from current
system development practices if they are to have higher
performance; better reliability, fault-tolerance, security, and
maintainability; faster development time; and lower cost. One
promising approach to improve design methodology is to integrate
rapid prototyping into the design cycle. For this approach to
succeed, designers and management must understand the different
uses for prototypes. Currently many developers do not
distinguish between different types of prototypes and as a
result, prototypes are viewed as a great expense with little
return. Additionally, the integration of prototyping into the
design cycle will require the development of tools and techniques
that permit the designer greater flexibility and faster results
than he has using current methodologies. Although prototyping
has great promise, successful research in interconnection
formalism, information abstraction, and prototype migration will
greatly enhance the current capabilities of prototyping.

507



I

REFERENCES

1. "Software User's Manual for the Integrated Design Automation
System", JRS Research Laboratories, Inc. December 11, 1989.

2. Jenevein, Roy, et. al., "Critical Component Analysis and
Synthesis for Hardware/Software Systems", Proceeding of the I
Systems Evaluation and Assessment Technology Workshop, Naval
Surface Warfare Center, 20 - 22 August, pp. 35 - 39.

3. "VHDL User's Manual: Volume I - Tutorial and User's Guide", I
U.S. Air Force Technical Report IR-MD-029, July 30, 1984.

4. Duke/UNC/Kestrel, Team Progress Report, Proceedings: Spring i
1992 Prototech Community Meeting, Honeywell SRC Technical
Report CS-M92-001, May 27 - 29, 1992. I

5. Luqi, V. Berzins, U. Kodres, and Y. Lee, "Prototyping a Low
Cost Tactical Display System", Proceedings of the Systems
Evaluation and Assessment Technology Workshop, Naval Surface
Warfare Center, 20 August 1991, pp. 23-30.

6. Liu, J. W. S, K. J. Lin, and C. L. L' "PERTS: A Prototyping
Environment for Real-Time Systems," vroceedings of the 1991 I
Systems Design Synthesis Technology Workshop, Naval Surface
Warfare Center, 10 September 1991, pp. 137-149.

7. Warshawsky, E. H., "The Network Synthesis System", submitted I
to 1992 Complex Systems Engineering Synthesis and Assessment
Technology Workshop. Naval Surface Warfare Center. July 20 -

24, 1992.

8. Purtilo, et al., "Module Interconnection Formalism: A Coloring
Book," Draft version, Spring 1992 Prototech Community I
Meeting, May 27 - 29, 1992.

9. Baker, Ted, "Prototyping Real-Time Systems: Some Practical
Considerations," Proceedings: Spring 1992 Prototech Community
Meeting, Honeywell SRC Technical Report CS-M92-001, May 27 -

29, 1992. 3

8
I
I
I

508 3



A NEW PARADIGM FOR THE DESIGN AND IMPLEMENTATION OF
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ABSTRACT

The paper considers the problem areas that need to be investigated to develop a new real-time
system design paradigm for the emerging applications and computing environment. The
envisioned environment will use the so called intelligent networks comprised of processors,
storage, communications and input/output resources and a methodology for their management.
It will be shared by multiple applications which will be guaranteed to be executed with specified
timing and reliability. These applications and the computing environment will be so extensive
that use of automatic tools that involve simulation and optimization of allocation of resources
will be imperative. While much research has been conducted on system specification languages,
far less effort has been expanded on how the systems specified using these languages can be
evaluated and analyzed. While basic techniques have been developed in the respective areas, it is
necessary to develop a consistent and practical set of models of the entities in the application and
environment and the network management methodology. These models will then have to be
used practically in simulating and optimizing the respective designs. The collection of these
models will in fact constitute the simulation and optimization tools. The paper focuses on the
following: modelling of concurrency methods; Simulation models for application entities,
simulation models for intelligent network entities, simulation of application timing, simulation
models of recovery, and optimization models

Basic techniques have been proposed in the above areas. It is necessary to integrate them in an
overall practical simulation and optimization guided by human design. These models will
provide also a consistent framework for formal definitions of the samantics of the application
and computing environment entities used in specification languages, including the interactions
between the entities.

1. INTRODUCTION

The emerging computing environment is envisaged as consisting of high-performance
computing resources connected through a high-speed communications network which execute
diverse applications in a timely and reliable manner. The effective exploitation of the full
potential of such an environment will require an advanced software/hardware design paradigm
based on sound methodologies, use of computer-aided tools, and education of the designers in
the new paradigm. [521

The key aspect of the paradigm is providing throughout the system's life cycle simulation and
optimization support for intermediate designs, and interactive man-machine redesign by
feedback of the results. The paper discusses the problem areas in developing this paradigm.

The paradigm focus is on real-time geographically distributed applications. Typical applications
are manufacturing systems, monitoring systems, weapons systems and intelligent
communication systems. Currently, most of these applications use dedicated networks.
However, in the envisaged environment, these networks will be shared by many applications.
Examples are provided in the intelligent networks envisioned by commercial telephone
companies. [1,451 They will support many virtual networks with guaranteed performance and
reliability, each virtual network supporting its own time-critical application.
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The potential high cost associated with an incorrect operation of these systems demands a 3
rigorous framework in which design alternatives can be postulated, optimized, and analyzed
during design as well as during their operations (to react to dynamic changes in the computing
environment). These systems are costly to prototype as they change dramatically. Thus the
timing properties of design alternatives must be carefully evaluated under varying conditions.
The design of these systems is becoming increasingly difficult because more functionalities are
expected and more distributed components are networked together. Because of this, the role of
the human designer is limited to providing guidance in exploring alternatives that can be I
expressed on the high level of system architecture. Because of the complexity of the
applications, design alternatives can only be effectively evaluated and optimized automatically
through extensive simulation. 3
Three major criteria must be applied to the methods that embody the paradigm.:

a) The man-machine interactions required to guide the design and propose alternatives.

b) The evaluation of system entities and their interactions through simulation.

c) The optimization of system architecture and resource allocation on a
dynamic basis. I

There has been much research on specifying the applications. As discussed below, we accept a
specification language as a given. Our objective is to outline the evaluation and analysis models
for applications specified in these languages which are executed using an intelligent network. I
The consistent collection of these models will constitute the practical simulation and
optimization tools used in the design paradigm.

The rest of the paper is organized as follows. Section 2 provides a further overview of the 3
future operating environment and use of the design paradigm, Section 3 identifies necessary
research and development areas needed in the models incorporated in design tools. It explains
what needs to be done in each of these areas. Section 4 concludes the paper. 3
2. FUTURE IMPLEMENTATION ENVIRONMENT AND USE OF DESIGN
PARADIGM 3
Based on current technological advances and customer expectations, it is not difficult to
imagine a future high-speed intelligent network that simultaneously supports many real-time
applications. An example is the intelligent telephone network that will provide world-wide I
distributed computing services in real-time. [1,45] There are many factors that affect the
performance of such systems: the hardware resources of the distributed network, the software
structure of the distributed application, the mapping of the software components to the hardware
resources, and the reconfiguration capability for adapting to dynamically changing conditions.

Because of complexity, a time critical system must be developed following a design
methodology that supports an iterative and top-down development. This design methodology
must be based on a framework that supports the progressive re-architecture of system
components and the comparative evaluation of intermediate designs. For example, the designer
may describe the system as consisting of a relatively few communicating components whose
internal details are hidden. The designer then uses the tools to evaluate and optimize this design I
assuming the existence of some hardware resources. Based on the evaluation, the designer may
change its design or refine it by detailing the internals of some or all components. This will be
continued until the design is detailed enough to be subjected to correctness verification. During g
refinement, some of earlier design decisions may also have to be incrementally revised. Above
all, much of this design methodology must be supported by computer-aided tools that can
automatically find optimal mappings between software components to hardware resources and
simulate their performance. The simulation should also identify bottlenecks and suggest how to
improve performance.

I
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3. PROBLEM AREAS IN DEVELOPING THE DESIGN METHODOLOGY

Much research haF been reported on specification of computerized systems, but relatively little
has been done on the three problem areas stated above: (a) the user guiding the automated
design, (b) the consistent modelling and simulation of application/resource entities, and (c)
optimization of the allocation of computing resources.
There is however a considerable reservoir of basic applicable techniques in these areas that need
to be investigated and adopted, as appropriate. [6,9,24,25,31,32,35,39,42,46,48]

3.1 Specification Methods

The methods of specification of computer systems reported to date may be accepted as given.
[2,5,8,17,20,29,31,32,49,501 They can be generally characterized as follows:
Independence of specification of the application from specification of the computing
resources: These two types of specifications are composable separately and independently.
There is, however, a third specification that ties application entities with computing
resources-that of liming aspects of the application entities when using available computing
resource architectures.

Graphic representation of a specification: A specification can be represented as an
Entity-Relation graph, where entities are nodes and relations are edges. A variety of attributes
may be associated with the nodes and edges as follows:

Application specification: typically consists of objects and transformation entities
(nodes) and data flow or object oriented relations (edges). [13,19] Also, it may include
as attributes throughput execution times, deadlines and response times, geographical
constraints, as well as reliability and recovery.

Computing Resources specification: typically consists of processing, storage, and
communication entities (nodes), and interconnection relations (edges). Also, it includes
attributes of processing capacities and dynamic network management and scheduling
strategies.J3,4,7,46]

Hierarchically structured entities: The applications and computing resources considered here
will typically be very extensive. For a human to provide design guidance, it will be necessary to
create entities on multiple levels of detail, each representing an abstraction of the lower level
entities. The design may be performed on a selected level of detail. Design based on a higher
level is easier to specify, evaluate and verify. However, it hides lower level details. Working
with a design based on higher level entities incurs the penalty of reduced precision, as well as
reduced possibilities for optimization. Based on feedback from the design process, the user may
have to modify the hierarchical structure by merging or subdividing entities. [40,52]
While specification languages vary, it is assumed that they may be transformed into a form that
uses the models of various entities and relations discussed below. The amalgamation of these
models will be the simulation and optimization tools that will be used in the design paradigm.

3.2 Design Areas That Need to be Developed

Six design areas are outline below. The state of the art of relevant techniques must be
investigated and, if appropriate, incorporated into the simulation and optimization tools used in
the design paradigm. They need to be evaluated based on their imnact on: (a) user interactions,
(b) modelling of entities for the simulation and, (c) the optimization of allocation of resources.
Further, there is a need to verify the method in test applications to ascertain its practicality. The
design areas are as follows:
MODELING OF CONCURRENCY METHODS: Concurrency is the prime method used to
parallelize operations in order to satisfy real time requirements. A number of techniques are
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available for synchronizing and scheduling concurrent distributed .. 17, 1 .. ,

guide the design, the user must understand the respective methods Methokds based on high level
entities (such as those based on messages) may be preferred, becau!e of ease of humnia
interaction and venfication, upon methods ba.wd on low leel ertutu¢s est th as those baed o11

semaphores). The selected concurrency nmethods must be Used to drtl, the szmuil.1o lf .uis a•iý
impact the search for optimal allocation of resources and the need h- the us-cl to lniiidljr tfih
architecture of the application bascd on results of the simulatn•u , t'u ius. the, '!,•e w iet. io!
concurrency method is critical as it cuts across the etntire dcstgt paiadwm I
SIMULATION M()DELS OF APPIACATI()N ENTITIIISý Tlhesc uiodels actualis tcpresent the
semantics of the entities expressed in the s•pcttication languag2e tO sNjV4 - Ith: application 'I h
user must understand these semantics in ordet to control the prog'ess of the desi.n The mlodels I
must be de-tied for all the software obiects that corrtesp4nd t• application cntitN, and for the
interactions between these objects. Somei entities may be specified on a higher lIel than that of
software objects and the selection of how they are to be implemented may be left to a later stage.
As noted entities may be hierarchically structured The exploditn or ttniplodint of enetits mrt
follow modelling rules as well- 11536,.411

SIMULATI*ON MODELS OF COMPUTING RESOIU.RChS AND) CO( M UNICAIJI)N3
ENTITIES: These models must be defined for all the types of enites that are use(d proc'ssors.
storage, communications and input/output devices. Separate modeL•s ate needed for entrtes with
different architectures. Resource entities may also be hierarchically structured. A methodology
is needed for exploding or imploding resource entities in a multiple level structure, In addition,
alternative management methods of the computing environment must be modelled, including the
scheduling and recovery algorithms. Thes environment management methods will tbe used to
drive the simulation as well.

SIMULATION MODELS FOR TIMING OF APPLICATION ENTITIES: These are models for
evaluating the delay involved in operations of an application entity, when using a feasible
resource architecture. A delay may vary depending on the type of operation and on the state of
the entity. There are a number of methods for specifying (and simulating) timing of entities.
They vary in the degree of complexity in specifying the delays and the simulation time required
to determine the delays.

SIMULATION MODELS FOR RECOVERY: These are models of the computing environment
management for detecting and responding to events if resources malfunction and if load
variations imperil the ability of the network to satisfy real time requirements. These models
must incorporate evaluation of recovery time. The simulation model for occurrence of the need
for recovery must be included as well. The model must take into account the effect of built-in
redundancy in network resources on need for recovery . I
OPTIMIZATION METHODS: The optimization is typically used to allocate resources which
minimize operating costs, delays, or recovery time, or some combination of these. The
envisaged applications and the computing and communication resources are extensive. The I
allocation space-the feasible combination of allocated resources and application entities-is
immense. Manual resource allocation is totally impossible. However, the rationale in the search
of the allocation space must be explainable to the user, so that user may offer guidance in the I
search. Resource allocations have varying life times and stabilities For instance, distribution of
information in data bases may not need to be changed for a long time. Such allocations may be
taken as static and completely stable. However, the design must explore wide classes of possible I
allocations of communication and processors as such allocations may have to be changed
frequently. Some allocations may have to be reoptimized frequently during daily operation, as
the application traffic changes and as resources increase or decrease. The optimization method
must be progressive so that if time allows it can continue in trying to improve the allocation of I
resources, and otherwise it accepts intermediate results. [11,16.26.27,30,34.401
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While basic techniques in the above areas exist, there is no systematln. stucture flor rCoor%)1rtmng
and modifying vanous types of models. A comprehensive framework must be constructed in
which these models can be incorporated. The productivity of the overall simulation and
optimization must be tested using realistic csamples I 1S3 in the contcXt oi existing "%olkstattons
and high speed processors.

I 4. CONCLUSION

The problem areas enumerated in this paper, while they ha~c t+ctn statcd m tcrm'% ol thcul u,, ht.
the tools of a system design paradigm, really concern the d&InIotton oI basic •coccpt., used III
system specification and inmplementation. The> piovide a basis I lo a hormal definition to the
semantics o1 application and resource entities 'They will aso take Into azccnt:ou rcahistiaý,lls th-"
human capacity to guide the design process and the compilinm' re,,tm cs nccded fo r desw.n
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A BSTRACT methodology in specifying an existing case

The purpose of this paper is to epitomize study [3]. This case study is of a real-time

the benefits of using the object-oriented software system designated the VGIPS

methodology to specify and develop a real- which implements a missile guidance

time system. Object oriented is a processor control system.

methodology by which abstract

implementation-oriented classes are INTRODUCTIQN

developed. Classes denote groups of In this paper the main system to be

system objects that share common examined is the Operational Flight Program

characteristics and behavior. These classes (OFP) [31. The OFP is the sing'p, system

are further specified by mapping data user that has three primary processes: I)

"attributes" and procedural "methods" to Autopilot, 2) Guidance, and 3) Gain

particular class "instances". Finally, the Computer. The Operational Flight

class interfaces or "message" structures are Program interfaces are identified in Figure

defined. It has been discovered that the 1. The following are commonly used

object-oriented approach can reduce abbreviations [3]:

development time of software systems [1]. FCS: FIRE CONTROL SYSTEM

This paper will show the object-oriented T/M: TELEMETRY
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IRU: INERTIAL REFERENCE Objects themselves may also be considered3

UNIT systems. For benefit of this case study, the

R/T: RECEIVER / TRANSPONDER OFP is a system of smaller objects that

CAS: CONTROL ACTUATION interact to produce the behavior associated

SYSTEM with the object "OFP". An 00 I
S/A: SAFE AND ARM specification attempts to modularize a I

GPU: GUIDANCE PROCESSOR system along the same object boundaries

UNIT that exist within the real-world, This leads 3
P/F: PROXIMITY FUZE to a one-to-one correspondence between the

object as it exists in the real-world and the I
Sc.4.2 object as it exists in a specification- Herein

-- lie one of the principal benefits to be

< D.,F• 2 r Crr,>T e realized using an object-oriented 3
<-fiCr= R" specification. In addition to simplifying the

conceptual model of an object's

specification it also serves to organize all I
Figure I - VGPS INTERFACE BLOCK DIAGRAM knowledge about each object in a single

logical location. 3
In Object-Oriented (00) methodology a

system is a group of objects that Because of the emphasis on objects and the 3
communicate among themselves. This corresponding de-emphasis on processes. I
communication can be understood by the 00 approach to system specification

analyzing the relationships that exist encourages the specifying of logical 3
between objects, the behavior of each systems rather than physical systems. The

individual object, and the mutual behavior necessary functional properties of a system 3
of cooperating objects. may easily be expressed, but these take

priority over the specification of system I
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objects and their relationships and 3) "Intracomponent linkages are

interactions. 00 techniques also provide generally stronger than

forms of conceptual abstraction not found intercomponent linkages. This fact

in other techniques that rely heavily on the has the effect of separating the high-

physical approach. frequency dynamics of the

components - involving the internal

In addition to aggregation it provides structure of the components- from

generalizations and classification. These the low-frequency dynamics -

allow it to easier specify the informational involving interaction among

processing with respect to objects. Most components" 121] this leads to a

importantly the object methodology separation of concerns allowing the

implicitly leads to the construction of observation of various parts of the

systems that embody the five attributes of system to be encapsulated.

well-structured complex systems: 4) "Hierarchic systems are usually

composed of only a few different

1) Complexity takes the form of a kinds of subsystems in various

hierarchy where every complex combinations and arrangements" 12].

system is composed of related sub- 5) "A complex system that works is

systems who themselves are invariably found to have evolved from

composed of subsystems until the a simple system that worked.." [51

elementary components are reached that is to say that as systems evolve,

[2]. objects that were once considered

2) The choice of what constitutes an complex now become the elementary

eiementary component is arbitrary and objects upon which more complex

is totally dependent on the observer of systems are constructed.

the system, The following benefits of applying the

object methodology have been discovered:
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(1) Lower development risk. changes, The object classes developed in 3
(2) Allows systems to be developed that earlier phases of the system life cycle allow

are more adaptable. the introduction of changes lower in the U

(3) Modem software practices are hierarchy to be made with no effect to the

implicitly involved, higher level objects. This level of I
(4) Allows system development to be abstraction is a natural benefit of 3

more natural in it's approach. developing objects from inheriting methods

from subclasses. 3
LOWER DEVELOPMENT RISK

The risk of developing systems with the As in the original case study [31 the careful I
object methodology is lowered for 3 design of object classes allowed the full I
reason(s). First, integration is spread out advantage of incremental development to be

across the entire system life cycle. Second, realized. This allows early functionality 3
during the object methodology design phase and evaluation of system capability which

an intelligent separation of concerns in the development of a complex I
reduces development risk and also inherits hierarchical system leads to a reduction in

the benefits of incremental development, the time needed for integration, and allows

Lastly, due to separation of concerns a system evaluation to occur at an earlier I
complex system can be readily identified phase of system development. A side

for its correctness. In this case study a real- benefit of early system evaluation is a I
time system was needed to be developed in capital savings of several magnitudes as it

a timely manner that would be totally is well known that the earlier a system

operable with little maintenance, modification is made in the system 3
development life cycle the less costly that

The distribution of system integration and modification is to administer. 3
separation of concerns has the benefit of

minimizing the impact of inevitable system ADAPTABILITY
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In approaching the topic of adaptability it suggests that "abstraction arises from a

must be remembered that several layers of recognition of similarities between certain

abstraction were used in the original case objects, situations, or processes in the reai

study design to facilitate this feature. world, and the decision to concentrate upon

Therefore it can be seen that by providing these similarities and to ignore for the time

"sufficient" level of abstraction a system being the differences" [6]. Through the

can be designed to be adaptable in the sense development of objects ( Hardware/

that the overall functionality will not Software ) from base classes that were

change drastically (i.e If that was the case analyzed for correctness and functionality

then design a new system) therefore the the VGPS system implementation utilized

essential system will be stable and the information hiding/method hiding. This

"how" to implement this essential system allows the higher level objects to be

will change to a measurable degree. A "insulated" from the changes made to lower

"properly" designed 00 system will exhibit level objects. The advantage to system

adaptability in that it's superclasses will be development is that now unimplemented

affected very minimally due to changes at objects can be readily accessed by using

the base class level. In the cases where this stub functionality.

is not immediately apparent then another

level of abstraction need be added to Encapsulation is the principle by which no

insulate the superclasses from the base part of a complex system should be

classes. 00 methodology supports dependent on the internal implementation

adaptability through the mechanisms of of another part of the system. Whereas

abstraction, encapsulation, modularity, and abstraction helps one conceptually model a

hierarchy. system to the desired level of focus

encapsulation "allows program changes to

Abstraction is one of the principles that we be reliably made with limited effort" [7].

use to cope with complexity. Hoare In the initial class designs for the VGPS it
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was decided that the elementary hardware a single abstraction, and encapsulation and 3
dependent components should be modularity provide the necessary barriers

encapsulated to allow the higher level around the object. The application of 3
classes to function relatively independent of modularity in the VGPS system was the

the underlying hardware system. Similar to natural result of designing meaningful base

the original case study this also had the classes. The principles of encapsulation 3
benefit of allowing a consistent interface to and separation of concerns that were

several system support objects. This utilized it, the base class design for the 3
allowed the design and construction of high construction of meaningful base classes

level objects that did not need modification naturally lead to the development of I
as hardware changes were instituted and the modular software. Furthermore the

fully operational Operational Test Program principles of encapsulation and separation

implemented in final form. of concerns lead to increased cohesion and

a decreased coupling.

Modularity is the principle by which a I
system is partitioned into individual well- Hierarchy is the "..ranking or ordering of

defined components. This allows easier abstractions" [4]. This was accomplished

comprehension and reduces the complexity in the VGPS by the successive use of base 3
of a system. Modules serve as physical classes to form objects which in turn were

containers in which we implement the the base "classes" for more complex 3
classes and objects of our logical design. objects. The hierarchy allowed the

Therefore it can be seen that the principles development of a system that was hardware

of abstraction, encapsulation, and independent and very adaptable. The 3
modularity are cooperative in their hardware independence was realized

functionality as far as the object through the careful design of the interface 3
methodology is concerned. That is an between hardware dependent base classes

object provides a well-defined boundary for and their respective superclasses.
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Superclasses represent a more general However, because the object methodology

abstraction and therefore as objects were supports most of these techniques implicitly

built with these superclasses those objects it can be shown that the overall

became dependent on the functionality of construction of a system using this

the superclasses themselves and not the methodology will as a rule take less time to

underlying implementation. Subsequently develop and maintain. This is primarily

this would allow the complete development true because the object methodology

of those objects that interfaced with a stresses the essential specification of a

particular superclass even though the system during the base class design phase.

procedural methods of that superclass were The formation of superclasses from base

potentially volatile. classes further facilitates the development

of systems that are stable and correct

MODERN SOFTWARE TECHNIQUES because the designer can comprehend more

The modern software engineering of the system's functionality and therefore

techniques that were used in the can at once see the correctness or

construction of the VGPS as in the original impropriety of a particular relationship or

case study include information hiding, interface. Furthermore, the resulting class

separation of concerns, modularity, re-use from a stable working system (i.e.

adaptability and incremental development, which is a byproduct of the object

Again as stated in the original case study methodology) leads to the formation of

the application of these techniques has not even more complex systems that are correct

been studied extensively in real-time and stable with little effort. Maintaining

systems development therefore it is not our and enhancing systems developed with the

theoretical claim to identify the advantages object methodology tend to be easier due to

and disadvantages of their use in system the incorporation of separation of concerns,

development. encapsulation, and modularity. That is a

particular enhancement ca be made to a
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advantages garnered from designing/ R,.il-Time Systems Symposium,

implementing via the object methodology December, 1988, pp. 60-68.

versus designing/ implementing with a [4] Druke, M., Quoted From "Object- 5
methodology and adding in these "extras", Oriented design with Applications",

As stated before the use of these modern Benjamin/Cummings, 1991, pp. 188. I
software techniques have not been ft lly [5] Gall, J. "Systemantics:How Systems

documented as far as the respective benefits Really Work and How They Fail", 2nd

and advantages to be realized from their ed. Ann Arbor, MI: The General 3
use. But it is not a far leap of faith to Systemantics Press 1986, p. 65.

justify that a system designed/implemented [6] Dahl, 0., Dijkstra, E., and Hoare, C. I
with these tools will allow the system A. R. "Structured Programming", II
designer to faster implement systems that London England: Academic Press,
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Abstract: Requirements methods proven prauical or b~akground to make cliksMOCS that avoid s"t'tA
large embedded computer systems (ECS) are dlopintproblems
formalized, synthesized, amt umproved. A cross-section Systems that pric",i and control Wi•atktin wr
of methods are -.valuated for robuvi semantics. usually complex; many of these systems arc
mathematical fc aUtion. capability for analysis and unprecedented and requtiremeats change frequent]y
verification, and support for model construction, Discipline, cLarity, and ation are rndd to -csxgrt
comprehension, reuse, and modification. A synth•sized such systems, System enginncmr should be corxcrred

Pragmatic Formal Method (PFM) augments the best with three fundij rtaJ comepts (TRUX 72)
characteristics of current methods. Some of the • Modehng a quantijve dercirfpitn of ryo-yrm
capabilities defined for PFM could be added to current o4vrato.
methods, supporting analysis for errors of omission and D y)nramics the change in the svytrm with
commission, and facilitating system simulation and respect to umc.
early prototyping, - Ortomiation ctkhce of a good design ht4c-d (n

relative -*eights a,,sigrcd u) sysim aspwts
ECS ENGINEERING

Requirements Models: ECS we pnmanly control
An embedded computer system (ECS) is pan of a oriented and require different techniqu-s for system

physical system and must perform quickly and correctly development than transaction-basedc systems.
for the physical system to perform its intended functon, Embedded systems must respond qucidy and crmdey
These systems interact with their environment (peoptc. to complex sequences of unpredictale external event,.
hardware devices, and software in other systems), and Thc system response varie according to the order of
are composed of s,?bsystems that may themselves be these events Consequendy. the accurate descrilpton

composed of smallcr subsystems interacting with each and analysis of the dcsired system rrAction to sequeices
other and their environment. see Fig. 1. Each of extcrnal stimuli is a very important step in the
subsystem usually contains both hardware devices and ipecificauton of embedded systems. The model that
software. The hardware devices may be generic embodies hierrchy and dataflow. which is sufficient
processors or displays, or may be functionally for tranwtaon--based systems. is insufficient for real-
specialized for an application, (e.g.. radars, urne systems. Requirements must include the dy-namic
communication, and navigation devices). Each view that specifics changes in system state caused by
hardware device may also contain softwar,.. The external evCnts.
software and hardware interact with each other and with The boundaries of the system must also he
the environment, explicitly defined, and the environment of the system

must be modeled 4Md analyzed as part of the system
Systems Engineering: For embedded systems, system requirements developfernt process. The, model should
requirements and design must be performed before include the time-dependent, deterministic ind non-
software requirements can be specified, Systems deterministic, parallel and serial nature of the inputs.
engineering is engineering from a total system, rather Nonfunctional requirements such as performance,
than from a component viewpoint. The system fault detection and recovery, safety, security.
engineer analyzes end-to-end critical processing availability, reliability, and ease of change are major
threads, including analog parts that affect performance concerns in complex embedded computer systems.
and accuracy, to develop a cost-effective, feasible They must be addre&sed during the generation of system
design that meets mission requirements. He/she and software requirements.
allocates system requirements to hardware, software,
firmware, communication links, and people: and then' Mathematical Formalisms: ECS are complex and a

allocates software requirements to distributed single mathematical formalism is insufficient to define
subsystems and distributed databases. A systems all system aspects. It is necessary to find a set of
engineer must have a strong software engineering formalisms that provides a minimal cover of those
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aspects necessary for system description. Quantitative 'etbokiues for Method Evaluation: 'ie following
models based on mathematical fornialisms are needed technfiqucs were u.Sed to cotptre methods
to support tradeoff analysis, and the development of EaLh method was used to spcci-y the
quality designs. Mathematical formalisms are required mquarements for an embedded system A h|ome heating
because of the size of the problem. Mathematics system was uwzd for benchmrak comparison. Basod on
provides the discipline, rigor, and reasoning abilty that this exercise and the hiteratuie, we evaluated each
am needed to solve complex problems. method with respect to thirteen destrable method

char~actestics.l

METHOD EVALUATION - We compared each method's model with a
generic model. A formal Entity-Relationship ER)

Grumman has sponsored research in requirements model (CHEN 76) was usod to compare the expressive
definition methods from the late 79's through the power of metlhods. Expressive power Is Important as
present (BARI 79. WHIT 81. WHIT 85a, WHIT 85 b. statements that cannot be expressed in a model will be
WHIT 86. WHIT 87a, WHIT 87b. WHIT 92a, WHIT omittrd from the analysis and resulting specification.
92b). Grumman also performed research in • Methods were analyzed to determine whether I
requirements definition under contract to Naval Air they use a partial order temporal approach, specifying
Development Center (WHIT 80), and Naval Research maximal concurrency and nondeterminism. All
Laboratory (WHIT 83, NASH 84, KMIE 84). methods specify some concurrency but most only

specify deterministic flow. Within processes, most
Methods Evaluated: In (WHIT 87b), we examined methods use a linear or branching order concept.
eight methods for modeling reactive systems to Linear methods are the least powerful and partial order
determine the formalisms used, and to evaluate method approaches are the most powerful (PNUE 86). I
capability for supporting embedded system
specification. These methods have not changed Formal Characterization of Method Models:
appreciably since 1987. New object-oriented analysis Experimentation with method models has shown that
methods (COAD 91, SHLA 88) use an entity- they can all be considered as special cases of the ER
relationship approach to information modeling, These model (TEIC 80).

methods provide an important view, but are not Formalizing system definition methods using ER
complete. They do not address the scenario or control models has several advantages:
aspects of ECS requirements. • The method objects and relationships are precisely I

The methods we examined are the semi- defined.
formal/formal methods most commonly used in - The requirements knowledge captured by the
industry for modeling complex systems. They are: methods can be stored in a database for analysis

Distributed Computing Design System, a and retrieval.
function flow and dataflow method " The expressive power of method languages can be
• Structured Analysis for Real-Time Systems, (SA- compared,.
RT), a dataflow and state-machine method I
* Higher Order Software (HOS), a function Entity-Relationship Representation of Generic Real-
composition method Time Model: The Entity-Relationship model in Fig. 2
* Jackson System Development (JSD), a data is used as a baseline to analyze a method's underlying

(event) structure method model. The generic model is a simplified one, but I
* Software Cost Reduction (SCR), a method based includes environment as well as system functions,
on cooperating sequential processes and event- which illustrates whether the method addresses
action causality environment modeling. The generic model also I
. PAISLey, a method based on cooperating decomposes state, function, event, and data. This is
sequential processes and functional programming used to demonstrate that the evaluated methods
• STATEMATE, a method based on cooperating decompose either event or state, but not both (e.g., JSD
sequential processes and state decomposition decomposes events while STATEMATE decomposes I
• PAMELA, an object-oriented requirements state). Decomposition of both state and event would
analysis method. provide more power for tracing system requirements to
The mathematical basis of these methods are: input software requirements.

.o output mapping, algebra (data abstraction), process
abs'raction, function composition/ decomposition, 1An extended abstract machine is an abstract state
sequential machines, concurrent machines (cooperating machine that permits condition "guards" to be
sequential processes), extended abstract machines1 , and associated with events. This makes the specification
predicate logic. monre succinct as the machine has knowledge about

states of other machines, and every event sequence does
not have to be specified. 3
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accepts a sequence of inputs and produces a sequence
In the illustration, rectangles represent objects; of outputs. In applying the method, normal

circular nodes represent relationships; the nodes are functionality is modeled frst, then exception conditions
numbered for identification. The relationship holds in are added. At the primitive level, the graph model is
both directions; the relationship name has been equivalent to a set of state machines which receive
provided for only one direction to keep the diagram inputs and produce outputs. Some of these state
simple. For example, relationship (1) is read machines are realized by hardware and some by
ENVIRONMENT contains FUNCTION, but the software. The software is allocated to processors and
complementary relationship FUNCTION contained in interface designs are derived.
ENVIRONMENT also holds.

In the generic model, both the ENVIRONMENT Software Requirements Model: After system
and SYSTEM contain FUNCTIONs. A FUNCTION is requirements are allocated to processors, SREM is used
performed in certain STATEs, causes and is triggered to define data processing requirements. For each
by EVENTs, is a refinement of a more abstract processor, a set of graph models called R-nets define
FUNCTION and uses and sets DATA. STATEs can paths from input to output interfaces. Each R-net has a
have subparts, and are contained in a STATE- single entry, which may be an interface to the
MACHINE-ABSTRACTION, which can be a environment, and one or more exits, which are either
refinement (detailed definition) of a more abstract interfaces to the environment or terminators. Processor
STATE. EVENTs contain and affect STATEs. inputs and outputs arrive and depart at ports, called
EVENTs are decomposed, and the levels of event interfaces, and are identified as messages from a
refinement relate to the levels of data refinement, hardware device or another processor. R-nets are
EVENTs contain EVENTs, and an EVENT at an composed of subnets, which are similar to R-nets and

abstract level is started and ended by EVENTs at a which can be further decomposed. At the primitive
more detailed level. EVENTs are a function of DATA, level, nondecomposable functions, called alphas, use
which is also decomposed. inputs and data derived by other alphas to determine the

value of new data items. An R-net can trigger R.nets
METHODS EVALUATED via an event. A delay associated with the event causes

the event to take place at a later time. Validation points
Four methods, DCDS, SA-RT, SCR, and are nodes which can be added to an R-net for specifying

STATEMATE are described in detail. A set of tables a path of processing through the net and its subnets.
compares the eight methods identified above. The eight Data is recorded at each validation point during
methods are described in more detail in (WHIT 87b). dynamic specification traversal, simulating system

operation. Minimum and maximum response times can
DISTRIBUTED COMPUTING DESIGN SYSTEM be expressed for paths, and accuracy requirements can
(DCDS): DCDS was developed as a real-time system be expressed for data.
methodology at TRW, based on research sponsored by
the U.S. Army Ballistic Missile Defense Advanced Evaluation of DCDS with Restect to Generic Model:
Technology Center, BMDATC ( ALFO 85). Research Both the software system and its environment (the
began in 1973. The method includes a System hardware) contain functions. DCDS describes
Requirements Engineering Methodology (SYSREM). functions, using both a function and net concept. The
and a Software Requirements Engineering net details the abstract function and consists of
Methodology (SREM). SYSREM is used for defining subfunctions. Functions cause and are triggered by
system requirements and allocating them to the data events, and use and set data. At the primitive level in
processing subsystem and the hardware. SREM is then SYSREM, the nets are equivalent to state machines and
used for defining the software requirements. function is synonymous with state. States and events

cannot be decomposed. Relationships in the generic
System ReQuirements Model: An important concept of model which are not expressible in DCDS are
SYSREM is that a system function acts over a finite illustrated in Fig. 3. Rectangles denote objects and
interval of time. This time interval is the maximum circles denote relationships between these objects. The
computation time and is specified as a performance relationship is identified by the number in the circle.
requirement. A system action is represented as a Relationships 3,5,6,7,10,11,12 are not expressible in
function that accepts items arriving during the time DCDS. This is illustrated by the lack of shading in the
.interval and transforms them into items that appear as figure.
output during the time interval.

The system requirements model is based on a DCDS Temporal Approach: DCDS can specify
stimulus-response graph model, called an F-net, with concurrency and selection, but not nondeterminism.
nodes representing subfunctions and edges representing Within SREM, maximal concurrency is not specifiable
events, or flow due to function completion. The system and is limited to fan-out, fan-in along a path. In some
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cases the limitations of linear temporal order are SOFTWARE COST REDUCTION (SCR): The
imposed. The modeler is forced to show one path. Software Cost Reduction (SCR) project was established
Alternate design paths cannot be shown. by Naval Research Laboratory (NRL) to prove that

modern software engineering practices could be used I
YOURDON STRUCTURED ANALYSIS REAL. for large Navy Software projects. The A-7E Aircraft
TIME (SA-RT): The Yourdon SA-RT methods are software was rebuilt as a test.
primarily based on dataflow (WARD 85). SA-RT
modeling begins with the development of an external Support for Information Hiding: The SCR Software
event list, to help engineers focus on those events in the Requirements Specification is based on the principles of
environment to which the system must respond. The separation of concerns and information-hiding (HEN]
events, which are labeled as data or control, are used to 78, HENI 80, WHIT 83). If hardware dependent U
define the system boundary and first level information is needed, the analyst looks at the Input and
decomposition. Output Data Items section of the SRS. This section is

organized by hardware device, and by input and output
SA-RT Model: The model contains a hierarchy of data name. The information in this section is not repeated I
flow diagrams (DFDs). The top level, called the elsewhere in the SCR document. Only the acronyms
context diagram, describes the interface between the for input and output names are used. If hardware
system and its environment. It consists of one data related attributes change, only the Input and Output
transformation which defines the system, and dataflows Data Items section should have to be changed.
which define the system inputs and outputs. Lower The software functional requirements are described
level DFDs contain data transformations which perform by Modes of Operation, and by Time-independent
the system function and which pass data (dataflows) Description of Software Functions. If the definition of I
among themselves. Data can also pass between DFDs environmental events and required software actions
at the same level. Data which is not immediately used change, only these sections should have to be changed.
is retained in "datastores". Primitive (not decomposed) Timing requirements are specified by function and are
data transformations are described in minispecs, which listed separately. If the timing requirements change, I
can be written in structured English or a specific only this section should have to be changed.

program design language (PDL), or can be described by The SCR document has a placeholder for a section
decision tables. Data structure is defined in a data on accuracy requirements. A format for these
dictionary, requirements is not defined. The Undesired Event

A control transformation is detailed by a diagram Responses section contains a list of events which could
called a state transition diagram (STD), similar in style occur and what response is desirable.
to a Mealy sequential machine model. The STD The SCR Required Subsets section identifies
activates and deactivates processes based on the history subsets of services which could be useful, if isolated, in
of signals from the external environment and other the development of similar systems. The Expected
processes, and sends signals to other control processes Types of Changes section identifies areas of possible
and the environment. When events are primarily data future change so that the design can accommodate I
oriented, the DFDs are drawn first; when events are these.
primarily control oriented, so is the system, and the The SCR Glossary provides a definition of
STDs are drawn first, abbreviations, acronyms, and technical terms. Sources

for information are given. Alphabetical Indices provide
SA-RT Temporal Approach: SA-RT specifies access to inputs, outputs, modes, and functions. The
concurrency by modeling concurrent STDs and by SCR dictionary contains text macros. Text macros are
activating parallel processes. Maximal concurrency phrases used to simplify the document.
could be specified but that is unlikely, as maximal
concurrency is not a primary concern of SA-RT. The SCR Model: Templates are completed for inputs and
SA-RT dataflow concept forces the SA-RT modeler to outputs. A function is defined for each output.
show one path; design alternatives cannot be shown. Functions are differentiated as either periodic I

(synchronous) or demand (asynchronous). A periodic
Evaluation of Yourdon SA-RT With Respect To function may be initiated and terminated or may always
Generic Model: SA-RT models EVENTs in the operate. Tables are used to define events and
ENVIRONMENT but not FUNCTIONs and thus conditions that cause a change in output value or that
cannot express relation (1) in the generic model. Events activate/deactivate periodic functions.
are not decomposed so SA-RT does not express Because functions differ greatly in different modes,
relations (7,10,11,12), as shown by the lack of shading modes are used to simplify the function description. A I
in Fig. 4, SA-RT Compared to Generic Model. mode in the SCR methodology is a system state defined

by the history of events in the system. The modes are
grouped by mode class. The system can be in more
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than one mode class at a time. The modes within each modified branching logic. Within the branching logic,
mode class are mutually exclusive, maximal concurrency and nondeterminism cannot be

Text macros take the place of compound conditions specified.
and data item definitions, when the data items are notI outputs or directly derived from inputs. The use of text COMPARISON OF METHODS WITH RESPECT
macros supports information hiding. If there is a TO METHOD ATTRIBUTES
change in the set of compound conditions or in the data
item definition, only the dictionary has to be changed, The evaluation of eight methods is summarized in
not the entire document. table 1. Methods are judged with respect to thirteen

desirable method characteristics. To clarify usage of
Evaluation of SCR Methods With Respect to Generic each method's vocabulary in the remainder of the table.
Model*" The SCR methods do not model functions in the first row in sheet I of the table compares method
the ENVIRONMENT, so relation (1) in the generic objects to a set of generic objects. The last two rows in
model is not expressed (see Fig. 5). STATEs and sheet 3 identify format and automated support for each
EVENTs are not decomposed, so state decomposition method.
relations (5,6) in the generic model are not expressed. Table 2 compares the eight methods by assigning a
Events are not decomposed, so relations (7,10,11,12) value (0, 2.5, or 5) which measures the capability of
are not expressed. each method with respect to each attribute. A value of

zero indicates the method is poor. A value of 2.5
SCR Temporal Amproach: The SCR methods are based indicates the method is fair. A value of five indicates

on a partial order concept. Since the input to output the method addresses the attribute well. The SCR
transformation is not identified, both nondeterminism methods score the best with a total score of 47.5, which
and maximal concurrency can be specified. The shows these methods to be far superior. DCDS follows
extended machine concept simplifies the definition of with a score of 30. STATEMATE received the third

required temporal order. highest score, 25.

STATEMATE: The STATEMATE model is a graphic Formal Basis (Attribute 1): Current methods are
model based on cooperating sequential processes, based on the following formal concepts: (1) input to

extended abstract state machines, predicate logic and output mapping, (2) function composition/
dataflow (ADCA 85, HARE 86). decomposition, (3) process abstraction, (4) data

abstraction, (5) cooperating abstract machines, (5+)

STAIEMATE Mdel: The model contains templates, cooperating extended abstract machines, and (6)
Statecharts, and Activity Diagrams. Templates are predicate logic.
completed for the following objects: state, condition, - DCDS is based on (1), (2), (3), (5)
event, action, activity (function), signals/variables, - HOS is based on (1), (2), (3), (4)
modules, and channels (which connects modules). A • JSD is based on (1), (2), (3)
Statechart is a visual extension to conventional State - SA-RT is based on (1), (2), (3), (5)
Transition Diagrams used in SA-RT. An Activity - SCR is based on (1), (2), (3), (5+), (6)
Diagram shows data and control flow and is similar to a - STATEMATE is based on (1), (2), (3), (5+), (6)
dataflow diagram in SA-RT. • PAISLey is based on (1), (2), (3), (5)

The Statechart is a major contribution of • PAMELA is based on (1), (2), (3), (4)I STATEMATE. A number of state transition diagrams SCR and STATEMATE are the most formal of the
can be shown on the same chart, displaying parallelism, evaluated methods.
selection, and decomposition. STATEMATE can
model cooperating sequential processes or support Model Construction (Attribute 2): The SCR model is
structured analysis methods. the easiest to construct and change, as long as mode

definitions are stable, as each data item, function
Evaluation of STATEMATE With Resp.ct. to Generic producing output data, and text macro (definition of
Model. STATEMATE does not decompose EVENTs. compound conditions or function producing internal
STATEMATE can express all relations in the generic data) is defined in one and only one place, and there are
model except event decomposition relations no explicit interconnections between functions. A

(7,10,11,12), as shown in Fig. 6. problem would arise if there were major changes to
mode definitions, as function definition is dependent on

STATEMATETem1gaAppmoh: If Statecharts were modes. If utilizing SCR methods for model
used alone, STATEMATE would be based on a partial construction, modes should be introduced after
order concept. With the incorporation of user specified requirements have stabilized.
Activity Diagrams, a transformation from input to
output is defined and STATEMATE is reduced to a
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Model Comprehension (Attribute 3): The SA-RT with function or process. DCDS associates timing
method provides a good visual overview of a logical constraints with objects (data, events, functions) or
design. Requirements are clearest in the SCR model as stimulus response path, and thus is the most powerful in
they are explicitly defined in event-action causal this regard. Other nonfunctional requirements are not I
statements: "If event a occurs and condition b is true, as well addressed as timing. PAISLey specifies
perform action c". There is a problem in understanding function reliability. DCDS associates nonfunctional
how the model works together as this is not explicitly requirements with all objects, but the requirements are
defined. There is no way to tell if all the requirements specified textually.
are present or if the system will work, if built to these
requirements. The static interrelationship of SCR Design Tradeoff Analysis (Attribute 8): Design
model parts could be shown using diagrams similar to tradeoffs for distributed processing depend on external I
dataflow diagrams. These diagrams should be event frequency, periodic and aperiodic inter-system
generated from the SCR model. If methods defined by message flow, nonfunctional requirements, estimated
Grumman were automated, the SCR model would be data and function size, scheduling constraints,
executable. Then, the dynamic interrelationship of communication protocols, and on processor, storage,
parts could be shown by running the model. and communication device constraints. Depending on

allocation, fault detection and analysis procedures vary
Design Independence (Attribute 4): If modes were and must be considered. Tools are available (FRAN
not used, the SCR model would be design independent; 87) for performing analysis, but the evaluated methods
the modes impose design constraints. All other method do not provide much of the data needed for using this
moods are design dependent. They provide a design type of tool.
which is independent of physical constraints.

Test Identification (Attribute 9): A product
Stepwise Refinement (Attribute 5): No model acceptance specification defines externally visible
adequately refines state, function, event, and data, and behavior which the product must demonstrate, and
relates them so that there are well defined functional specifies any design constraints that must be met. TheI
layers. STATEMATE has developed the best definition SCR methods provide the most support for identifying

of state decomposition, but engineers using the method acceptance tests, as they describe behavior which is
find it difficult to relate decomposition of state to externally visible or which could be externally
decomposition of function. These engineers use determined. STATEMATE Statecharts support the
structured analysis methods and turn processes on and identification of tests as the flow of events and actions
off by a state transition "controller" at each level. Our are identified. DCDS functional paths support test
research extends the SCR methods by expanding identification, but it is difficult to determine which I
requirements defined in "text macros." When text paths should be tested other than the ones shown. Other

macros define conditions not directly derivable from methods do not support testing well.
inputs, a function is needed to evaluate the condition.
These functions become additional cooperating Identification of Missing Requirements To Be I
processes. In addition, we decompose state, function, Supplied TBS(s) (Attribute 10): The SCR templates
event, and data so that system requirements can be and the use of text macros for information hiding
traced to software requirements, and levels of provide the best support for identification of TBS(s) or
abstraction can be defined, gaps. It is harder to support this feature with a method I

which is based on flow.
Separation of Concerns (Attribute 6): The SCR
methods are the only methods that have made Verification (Attribute 11): An entity-relationship I
separation of concerns a goal and provide the best (ER) model and operational capability are desirable for
support. All other methods show explicit inter- supporting model analysis and verification. PAISLey,
connections between model parts, and would be STATEMATE, and DCDS provide the best facilities for
difficult to partition according to the concerns of model verification. All three methods provide an I
different specification readers. operational capability. A PAISLey definition is

statically analyzed in a manner similar to a software
Nonfunctional Requirements (Attribute 7): It has program. STATEMATE and DCDS perform static
been shown (WHIT 83) that functional timing verification based on the underlying ER model; the I
constraints could differ by mode; and it is therefore database is queried for information. We have defined
reasonable to believe they could differ within a function an ER model that would support SCR model capture
according to event, condition, or output value. The and dynamic execution. Our decision tables, predicate
SCR methods address timing constraints well, but they logic, and temporal logic support static verification.
can only be associated with data or function. PAISLey
addresses timing constraints, but also associates them
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Reusability (Attribute 12): The SCR methods identify information captured about a target system when
subsets of the software which could be replaced or be using the SCR method. (Examples of entites are
reusable. PAMELA packages data and function by modes, events, and actions; examples of relationships
object in Ada PDL, and these packages may be are caused-when, makes-true, and activated-by.)
reusable. HOS abstract data types and JSD object
structures may be reusable. STATEMATE Statecharts (2) A mapping from the static SCR model to a net for
identify control. They may be reusable, if they are behavioral execution. PFM-nets are similar to Petri
organized according to objects in the environment. Our nets, and are not dependent on textual context for
method packages requirements by object, to provide a execution. They should execute at the speed of Petri-
flexible reusable specification. nets.

System and Software Definition (Attribute 13): Only (3) Supnort for system and software definition. Early
DCDS supports both system and software definition in system definition, system engineers understand
and provides traceability from one to the other. conditions that affect the system, but have not as yet
Unfortunately, the path concept which is used in DCDS decided on system modes. Early system models
requires that design decisions be made when developing should be developed without modes, and modes
the model. should be introduced when the definition is clarified.

To support this process, we have created a method for
Comparison Of Methods With Respect To Generic introducing modes into a model without modes. Our
Real-Time Model: None of the evaluated methods methods trace data, events, conditions, and functions
contains all objects and relationships in the generic real- from system to software requirements, and between
time model. JSD is the only evaluated method that different levels of definition.
decomposes EVENT, but does not decompose STATE
or STATE-MACHINE. SA-RT and PAISLey have (4) Support for reasoning about a tarect system
STATE decomposition. The SCR method uses jfjcjjn We have found Allen's theory of
STATEs and STATE-MACHINEs, but does not temporal intervals to be consistent with SCR
decompose them. concepts, and believe it would be useful for reasoning

Comparison Of Methods With Respect To Temporal about temporal order during early specification

Approach: The most powerful partial order methods phases. We have extended predicate logic to include

are those that (1) can express maximal concurrency, (2) events, so that consistency of mode-transition tables

specify mutual exclusion at every level, and (3) specify can be analyzed. Engineers using the logic were able
to detect inconsistencies in the A-7E Aircraft

nondeterminism without definir g all possible paths. Software Requirements Specification.
The SCR methods support all three. Item (3) is
supported through the use of extended machines. This (5) Extensions to the SCR lanluage. State and event
is preferable to defining all possible paths which makes relationships, including decomposition, are defined in
the definition complex. The paths can be generated the ER model and arec used in target system
from the extended machine, if desired. specification. Indexing and predicate qualifiers have

A PRAGMATIC FORMAL METHOD (PFM) ~been added to the language to simplify specificationsinvolving multiple instances of an object (e.g.,

Our evaluation of practical methods has identified aircraft being tracked). Other extensions permit the

the Software Cost Reduction method (SCR) as having specification of different timing requirements in
the best characteristics on which to build a more different modes, definition of data senescence, and
powerful method. SCR methods have a strong formal worst case timing for response to stimuli, for

basis and can be augmented to eliminate deficiencies. environment response, and for computation,
We are developing a method, PFM, that enhances the communication, and storage access delays.
SCR methods with capabilities found to be beneficial in PFM Formal Model: A PPM model is a definition of
other methods, and features not available in any
evaluated method. PFM is discussed in detail in (WHIT a target system that is to be built; it is a statement of the
87b). PFM logic analysis techniques have been helpful functional requiremcents. The PPM model augments the
in checking aircraft mode transition. Other capabilities SCR model which consists of data templates, functionhavenot s ye bee tesedtables, and mode transition tables. These templates and
have not as yet been tested. table" are easy to create and understand, but have

Enhancements to the SCR methods include: underlying formalisms. Function tables are extended
state machines, where machines operate concurrently

(1) A formal Entity-RelationshiD model for the SCR with and have state knowledge about other machines.

method- This model is a formal description of the PFM uses the same templates and tables for model
definition. In addition, PFM uses a formal ER model
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which supports automation. The ER concept is used to from the uncoded portion of the static model,
formally define the objects in the PFM model and interacting with the coded portion. The PFM rapid
relationships between these objects. The ER definition prototyping process is effective, according to Bruno and I
can be used as a logical database design for storing Marchetto's criteria. "Rapid prototyping is an

target system models and is needed for method alternative paradigm to the conventional software life
automation. The ER model can also be used by the cycle... However, the prototyping paradigm is in-
analyst to determine the proper use and power of the effective if it is not supported by a developmentPFM method. environment that provides an may derivation of

In PFM ER diagrams, rectangles represent objects; prototypes from formal specifications and makes the
circles represent two-part relationships. triangles implementation process partially automated" (BRUN
represent three-part relationships; and squares represent 86).
four-part relationships. The relationships are only
specified in one direction to reduce diagram SUMMARY
complexity, but the relationships are complementary. I
Figure 7 defines a PFM FUNCTION. When Existing methods are not adequate for modeling
relationships are three-part or four-part, a special syntax real-time embedded computer system requirements.
is used. For example, the three-part relationship (210) Eight well known methods were evaluated to determine
reads V ACTIVATED BY VI WHE.N I (FUNCTION method strengths and weaknesses, and to determine the I
ACTIVATED BY EVENT WHEN CONDITION). optimum basis for synthesizing a more powerful

The roman numerals I, V, VI refer to objects which take method, a Pragmatic Formal Method (PFM). The best
part in the relationship. The roman numerals appear in capabilities of existing methods were selected, and
the upper right-hand comer of rectangles. We have where required new capabilities are being created, to
defined a full set of ER diagrams for PFM. ensure that PFM satisfies the needed characteristics for

requirements modeling.
PFM-Nets: PFM-nets are formally defined and a I
process transforms a PFM static model of a Target FUTURE RESEARCH
System to a PFM net. If techniques were automated, a
PFM-net could be computer generated from the Target Our goal is to develop a method and completion
System model, criteria for modeling subsystem boundary propcrties

PFM-nets are equivalent to Petri nets with inhibitor during the requirements definition phase, so that
arcs, and have the same power to perform system interoperability can be verified.
simulation and analysis. Like Petri nets, a PFM-net Our hypothesis is that currently available modeling
contains places, transitions, and edges. However, in techniques can be used to specify subsystem I
PFM-nets, each place can represent a condition or an interoperability, but better support is needed:
event. Each net contains a set of objects. Each object - Detailed steps have not been defined to support
contains a subset of the places, transitions, and edges in the process.
the net. PFM-nets are organized by object, as they are 0 Static and dynamic analysis techniques are
generated from the static model. required to support model integration.

The rules for moving tokens in PFM-nets are - Methods are needed for specifying and testing
somewhat different than the rules for Petri nets. An feasibility of performance requirements. I
EVENT place keeps its token for one time unit as an * Support is needed for testing the interoperating
EVENT is an instantaneous occurrence. CONDITION model.
places hold their tokens until the associated transition is The philosophy of modeling for interoperability
fired. CONDITION places represent the states of an will be on modeling from the boundary of systems,
object. If a CONDITION (state) of object A is linked to inwards as in the SCR methods and PFM. These
a state-transition for object A, the state of object A methods define system outputs in terms of inputs,
changes when the transition is fired, and the token is conditions, events, and states, providing inter-
moved from the old state to the new state as in Petri dependencies of data, not normally found in an I
nets. On the other hand, if the state of object A affects Interface Requirements Specification.
a state transition in object B, the state of object A System context will be defined in detail
should not change and the token is not removed from incorporating sequences of data entering and leaving S
the CONDITION place in object A. Figure 8 shows the subsystem, as in the Requirements Driven Design
interacting house temperature, motor, and oil valve for a (RDD) method which is based on DCDS (ALFO 91).
home heating system. Required communication mechanisms for

A rapid prototype can be developed from the PFM interoperating subsystems will be incorporated into the
static model by coding the operational aspects of model as in PAISLey.
actions associated with significant objects and events. Engineers must specify and allocate requirements
The rapid prototype consists of the PFM-net generated for end-to-end timing of critical processing flows, and
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specify delays inherent in existing components.
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Colin Tully, Colin Tully Associates Allan Willey, Motorola

Abstract: Problems in the development of large currently practicing CBSE in the United States,
computer-based systems indicate that a new discipline • Definition of a CBS and CBSE responsibilities,
is needed at the systems engineering level. Designing - Standard and advanced practices, and areas for
systems with distributed processing and databases further research,
requires analysis of critical end-to-end processing flows • Strategic targets for computer-based systems
to determine feasibility and proper allocation. An engineering improvement. These targets can be
expanded skills base would be required to enable either implemented today, and would have a high benefit-to-
software or systems engineers to perform the necessary cost ratio in terms of process and product improvement.
tradeoff studies concerning software, hardware, and Implementing the suggested improvements should
communication components. increase corporate profitability and customer

This paper informs managers, engineers, educators, satisfaction.
and researchers about the need for computer-based SCOPE OF CBSE
systems engineering and the strategic opportunities this
discipline provides for systems engineering System Types. Systems have become more encom-
improvement, passing, complex, event-driven, physically distributed,

INTRODUCTION and networked. Table I shows examples of systems.
Problems with complex and stringent system

A computer-based system (CBS) includes all requirements are reflected in the following examples:
system parts that process and control information. * Space Station Freedom has approximately 1.5
Computer-based systems engineering (CBSE) requires million requirements.
that activities of systems engineering be applied to the • The Air Traffic Control System requires down-
CBS. CBSE responsibilities include definition of time of no more than six seconds per year for criticalCritical procespsingflowies, alingle sofiitwe tof functions.
critical processing flows, allocating software to - The next generation of fighter aircraft requires
distributed systems, making decisions concerning extensive computer control to aid pilot control. Wing
computer hardware, and sizing communication and tail control surfaces must be regulated thirty times
components. per second.

The IEEE Computer Society Task Force on CBSE 0 The modern automobile has more computing
was created in 1991 to promote the discipline, power than the Lunar Lander when it landed on the
encourage research in the field, and establish a moon. It is projected that, by the year 2000, the

framework for education and training (Agrawala, 1991; automobile computer will have more interactive sensor-
Lavi, 1991a; Lavi, 1991b). The task force created three control loops than the largest chemical refinery in
working groups: education, research, and practice. Baytown Texas.
This task force paper presents the case for a CBSE • Computerized systems can cause unsafe condi-
discipline, discusses current practices, and identifies tions, leading to increased requirements to "prove" the
market and social imperatives for improving the state of safety of system designs.the practice.

The paper addresses the following issues: System Designer Role. A system designer translates
Examples of CBSs and the number of engineers requirements into designs, verifies that system behavior

meets requirements, allocates functions and behavior to
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reference model for a distributed system., This is one
Table 1. Exam lesof sltems of a number of reference models under discussion

Defense JComm- ublic ele- uto- rFinan- (Jackson, 1992; Alford, 1991; Oliver, 1991; White,
ercial romm otive [cial 1991, White, 1987). In the figure, processing entities

VERY HIGH COMPL EXITY include analog and digital hardware, firmware, and
software. Communications entities provide network

[ntell- PIMS eather lntellig. services that allow multiple processing entities to I
igence =orecast *igh- exchange information, transparent to application

usion ng ways software. Information services provide for exchange of
information between processing entities and storage

pace Airline ir Central co10- devices, e.g., disks or tapes. Human/computer inter-tation eser- raffic ffice etric action services including windows, graphics, andations ontrol witch odel command services support interaction between

MEDIUM COMPLEXITY processing entities and people. CBSs interact with the
- - - - - physical environment through sensors and actuators,

ruiser B-777 BART etwork Dealer Port- and also interact with external CBSs.
rBl- ontrol Net- folio
omber works Mgmt CBSE. The nature of CBSs requires a different systems 3

- -- - engineering knowledge base than that normally required
gis- Mfg Nuclear pus Vehicle NYSE to engineer non-CBSs. All CBSs involve application

cs uto- eactor ack- Mgmt software and associated services that are conceptual in
pot ration ne nature and inherently difficult to grasp. Requirements

LOW COMPL EXITY satisfied by software are frequently ambiguous and
subject to change, leading to CBS design changes that

mart ell AN ruise uto- may sacrifice system architecture flexibility to ensure

software changes in complex CBSs can result in

components, and builds system descriptions. During unpredictable behavior, both internal and external to the
the development and test phases of a project, a system CBS. The distributed nature of a CBS is unique in that
designer interprets requirements, guides other system CBS resources are frequently geographically dispersed
designers of related systems, and directs tradeoff and under the control of different organizations. To
studies. Although this effort amounts to only five to ten exchange data among such systems requires interfaces
percent of the total system project, the adequacy, to describe content, and protocols to describe format.
accuracy, and timeliness of this work is critical to the A dedicated discipline is advocated to address these
success of all complementary activities, complex and unique CBS attributes. CBSE as a

discipline is analogous to systems engineering in the
Number of Computer-Based Systems Designers. traditional sense. What differs is the focus, and hence !
The population of system designers must be identified the skills necessary to successfully perform CBSE.
by what they do, rather than by industry, type of system CBS engineering is concerned with the following
being produced, or even job titles. Ascent Logic responsibilities:
Corporation has estimated there were 300,000 people - Design decisions concerning the distributed
doing system design in the United States in 1988 and it nature of the CBS (its architecture),
is expected the number will exceed 360,000 by 1996. • Allocation of resources to component developers
This is partly from increased employment as forecasted and management of the coordinated process, I
by (Hearings before Joint Economic Committee 1988), * Allocation of functions and data to CBS

but also because more workers are becoming capable of resources (processors, software, datastores, displays,
designing systems. Ascent Logic estimates that Human Computer Interface),
approximately one-third to one-half of the designers * CBS strategies with respect to safety, security, I
(100K to 150K) are focusing on CBSE. The world- and fault tolerance,
wide population is estimated to approximately double - Global system management strategy,
these figures. • Definition of information services,

- Performance allocations (timing, sizing,
ENGINEERING COMPUTER-BASED SYSTEMS availability),

- Testing (component, integration, inter-
Definition of CBS. A CBS consists of all components operability with the external environment), I
necessary to capture, process, transfer, store, display,

and manage information. Figure 1 shows a CBS
1This figure is taken from (POSIX 1991). 1
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Figure 1. Distributed CBS Reference Model

* Logistics support (maintenance, training, config- CBSE Process. The CBSE process must be tightly
uration management), integrated with the systems engineering process.

- Implementation of the CBS within the existing Industry has recognized the size and scope of problems
environment. with systems engineering processes, as evidenced by

In performing these tasks, engineering tradeoffs the recently formed AIAA Systems Engineering
must be made, prompted by operational requirements, Working Group, the National Council on Systems
limited resources (e.g., finances, personnel), CBS Engineering (NCOSE), and Europe's Atmosphere
component design (e.g., bandwidth, memory size, I/O Project. Recognition of the need for a special discipline
subsystem, database system), system environment in CBSE is just emerging, as seen by the IEEE
constraints (e.g., operational environment, security Computer Society Task Force on Computer-Based
measures), and performance thresholds, (e.g., Systems Engineering.
timeliness, throughput, availability). Table 2 summarizes the state of the CBSE process.

Numbers in the table refer to paragraphs in the text.
CBSE STATE OF PRACTICE The "I" in "l) Undefined CBSE process" indicates that

more information can be found in the first paragraph: 1)
This section addresses standard and advanced Process definition.

practice, and topics where further research could result
in significant process improvement. Key areas are Table 2. State of CBSE Process
addressed

"• The CBSE Process, STANDARD ADVANCED RESEARCH
"• Requirements Definition, PRACTICE PRACTICE NEEDED
• Design (Process and Architecture),
"* Interfaces, I)Undefined 2)Systems 1)Methods and
"• Management, CBSE process engineering tools for process
"* Process automation, process modeling
"* Documentation, and modeling (may 2) CBSE roles
"• Interpersonal Communication. include CBSE and tasks
This description of CBSE state of practice tasks).......

addresses many of the most important issues, but is not
meant to cover all issues. The CBSE State of Practice 1) Process definition. In general, corporations
Working Group would like to hear from other CBSE have not defined their CBSE processes. Some
practitioners concerning additional state of practice companies use static modeling methods and tools to
issues. capture and document their systems engineering
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processes while establishing quantifiable process need effective methods for specifying system
metrics. A few companies use executable modeling performance requirements that support system design
tools for process modeling, that for the most part were and derivation of software perfornancz requirements.
developed for requirements modeling and were based They also need useful paradigms that promote reuse of I
on state machine or Petri net models. Industry needs existing requirements specifications, and use of non-
better methods and tools for process modeling. developmental items (NDI). Analysis for completeness.

2) Process modeling needs. Industry needs a consistency, and correctness is primitive. Tools should
well-defined, executable CBSE process model that apply logic, numerical analysis, and domain
incorporates relationships to the overall systems understanding to the analysis problem.
engineering process. The defined CBSE process mus. 3) Operational scenarios. Practitioners need
be flexible enough to foster process improvement in a models for generating a wide range of operational I
timely manner. Industry needs metrics to measure scenarios, including many with low probability. They
process improvement and product quality, need these scenarios to determine whether the

3) A CBSE discipline is needed. CBSE must requirements are consistent and adequate in terms of
start at the beginning of the systems engineering defining and constraining the behavior of the system
process, supporting feasibility analysis and within its environmenL
requirements allocation. Allocation decisions are made
early in the systems engineering life cycle, sometimes Design Process. Table 4 summarizes the state of the

before proposal submittal. These decisions can have CBSE design process.

significant impact on critical processing flows, Table 4. State of CBSE
requiring analysis of performance and accuracy. Design Process

STANDARD ADVANCED RESEARCH
Requirements Definition. Table 3 summarizes the PRACTICE PRACTICE NEEDED

state of practice in requirements definition. PR E

Table 3. Stale of Requirements Definition 2)Static 3)Planning for I)Systems/
functional change software dialog

STANDARD ADVANCED RESEARCH models 4)Starting 2)Support forSTADAR ADANED ESERdyn)amic models deiio)Dpu e ctradonf
PRACTICE PRACTICE NEEDED 2)Hard coded decision capture tradeoffs

analysis

l)Natural 2)Applying l)Consistent analysis

language for software language

systems modeling 2)System modeling 1) System/software engineering dialog. In too
engineering techniques to 3)Model generated many cases, systems engineers do not understand what
l)Inconsistent systems scenarios information should be provided to CBS implementers.

languages engineering Information is provided in the wrong sequence, and is

1) Language. Natural language is the standard not analyzed to sufficient detail. Tlhe dialog with the

Practice for systems engineering specification. Most implementer is frequently not structured, e.g., providing

software engineers use software requirements models, the correct level of information to determine feasibility

frequently modeling data, data flow, and control flow, versus the correct level to design.
Hardware engineers develop models using VHDL(s). 2) Static and dynamic models. Engineers, using

The use of inconsistent languages by different standard software practices, produce static functional I
disciplines leas to i commui catin l andgabyiifnty models that provide various representations for human
disciplines leads to communication and traceability review and analysis. These engineers seldom useproblems. Information passed from systems dynamic modeling techniques such as Petri nets. They

engineering to other specialities must be complete and dyntm y m ode dyni c as of fx-oThe

must be in the target methodology and notation, frequently hard-code dynamic models of fixed-point I
Information must be traisferred without manual designs, and use few parameters to support

reentry. Attention needs to be paid to both the semantic requirements changes and tradeoff analysis. They have

issues and the tool interface issues involved in this a limited ability to trade capability (data flow and logic
transition. Changes must be propagated in both control) versus resource utilization and performance.directions. They have done little research on nonlinearities caused

2) Methods and models. More advanced by scale-up of capability/data, and seldom analyze or
2)ac ethodrsae apind sodrel Mereg a nds model scale effects.

practitioners are applying software engineering methods 3) Planning for change. System developers are
to systems engineering. These methods are not beginning to use open system architectures, as
sufficient to support all CBSE functions. Practitioners engineers plan for change. CBSs can change 3
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significantly during their life cycle, and researchers 3) Empirical data unavailable. Designers do not
addressing an improved process must address this fact. sufficiently use partitioning rules associated with
New processes must handle multiple variants for a maintainable systems, so there is not enough analytical
system ("system families") efficiently. Developers data to validate these rules.
must trace the implication of design changes to/from
higher level specifications and across families. To Interfaces. Table 6 summarizes the state of interface
support change analysis, CBSE needs effective design definition.
decision capture.

4) Ramifications of systems engineering Table 6. State of CBSE Interface Definition
decisions. Systems engineers make "high-level" or
"architectural" or "system-wide" design decisions.
These are policy decisions that should inform and STANDARD ADVANCED RESEARCH
constrain subsequent design and management decisions PRACTICE PRACTICE NEEDED
relating to various subsystems. It is unclear how to
present and propagate these key decisions, or how to I)Documented 2)Environment l)lnterface
monitor subsystem design decisions to ensure that they by data element and subsystem modeling
are not in conflict with system-level design decisions. description and documentation 2)Capabilities
In addition, many high-level or system-level decisions protocol and simulation for modeling
result in major consequences to the CBS. Engineers do !ost systems
not understand these consequences when the decisions 3)HCI
are made. Research is needed to determine what types partitioning
of decisions have major consequences, what are the
ramifications of these decisions, and how such 1) Level of abstraction needed. Engineers
decisions should be made. normally document interfaces by data element

5) Specification for Reuse. Industry needs description and protocol, which is inadequate.
effective models of system classes and of common Research is needed to define the level of abstraction
subsystems/components that are used across classes. that supports modeling the boundary properties of a set
These models are important for supporting domain ta supports modeling theb r popries ofhavset
analysis and effectively storing high-level system of subsystems, to verify that their combined behavior
segment or subsystem descriptions in a library. To matches the system requirements. If this can't be done,
effectively use a library, it is important to be able to a system must be built and tested before it is known
assert: "what I want is exactly like that except for...." whether it meets the requirements.

2) Modeling host systems. Engineers need
Design Architecture. Table 5 summarizes the state of capabilities for modeling host systems, to predict the
CBSE architecture. effects of the designed system on the host. Host

systems are frequently human activities systems, within
Table 5. State of CBSE Architecture which our designed systems are to be used.

3) Human/computer partitioning. When
STANDARD ADVANCED RESEARCH engineers design systems, they implicitly specify the

RC Ntasks of system users. Designers need better knowledge

1)Performance at 2)Standard 2)Domain of how to partition functions and responsibilities

expense of architectures, architectures between people and designed systems. Designers

architecture open systems 3)Empirical data should not assign functionality to a system just because
2)Component relating methods it is technically feasible, or even cost effective. They
hierarchies, few to quality designs need better human-computer interface (HCI) models.
guidelines They usually do not model this interface adequately

since there is no defined process for integrating the
1) Performance at expense of architecture. In knowledge of all stakeholders.

standard practice, design emphasis is on system
performance at the expense of other architecture issues. Management Table 7 summarizes the state of CBSE
These performance optimized solutions are inflexible management.
and hard to adapt to changing requirements.

2) Component hierarchies, standard architec-
tures. Designers usually decompose unprecedented
systems into component hierarchies using few
guidelines. Standard domain architectures are
appearing as building blocks for precedented systems.
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Table 7. State of CBSE Manacement support. Further, there are tools and techniques
designed to support management and integral processes

STANDARD ADVANCED RESEARCH across all system life-cycle phases. Examples of these
PRACTICE PRACTICE NEEDED tools are problem tracking and reporting tools and

project tracking and reporting tools. At the very highest
1)Good cost 2)Domain specific 4)Process and level, there is a class of tool that provides a
data for WBSs product "framework" into which individual tools are deployed
precedented 3)Risk management characterization appropriately over the life cycle, and that maintains all
systems 4)Data collection for data records and documentation for system development and

I collection operation. Analogous concepts are found in CAD with
the "CAD framework initiative" and in software with

1) Costing. Different cost models result in "Integrated Project Support Environments."
different cost estimates, using gross overall metrics
based primarily on lines of code. These cost models Table 8. State of CBSE Process Automation
apportion total cost and effort estimates to each life-
cycle phase; engineers need fine grain metrics for each STANDARD ADVANCED RESEARCH
phase. Industry can usually estimate the cost of PRACTICE PRACTICE NEEDED
precedented jobs but still has problems costing
unprecedented jobs. I)Task oriented, 1)Frameworks, l)Integrated

2) Work Breakdown Structure (WBS). Large some tool approach to Systems/CBSE
projects normally track cost and schedule against a interfaces, repetitive tasks environment
WBS. If the WBS and CBS architecture are software 2)Efficient
inconsistent, the WBS cannot support CBS status environment I change mgmt
tracking. This inconsistency frequently exists, since
engineers define the WBS before they know the 2) Higher level tools needed. Unfortunately,
computer system architecture. To solve this problem, there are few examples of sophisticated, high-level I
industry needs WBS(s) that support each CBS process automation tools that systems engineers widely
application domain, use. A recognition of the need exists, but tool suites

3) Risk management. Successful projects have not kept pace with this recognition. An area
perform risk management, but use primitive methods. where such tools are needed is in change management. I
Generally engineers do not analyze detailed data from Efficient change entry is a major problem for large
previous programs to understand cause and effect. complex systems. Major changes may require updating
Some risk assessment tools exist, but they do not information about a single entity in several places in I
interact with requirements and design tools, where databases of a number of tools. This multiple manual
engineers identify risk issues. Industry needs general update process is both costly and error prone. A
tool suites that support risk management views, standard model/schema underlying all tools in use is a

4) Data collection. In good practice, engineers desirable solution. I
collect data to manage the current project. In best
practice, they use data to improve engineering processes Documentation. Table 9 summarizes the state of
and make predictions for future projects. Research has CBSE documentation.
provided some capabilities for collecting software I
sizing data and using the data to size new software Table 9. State of CBSE Documentation
components. CBSE needs better techniques for process
and product characterization, and industry must collect STANDARD ADVANCED RESEARCHand have access to the data it knows how to PRACTICE PRACTICE NEEDEDcharacterize. RA CPR TE N D

Process Automation. Table 8 summarizes the state of l)Natural l)Databases and l)Integral role

CBSE process automation language specs documentation with process
generators 2)Designed

1) Levels of tool support. There are several approach
layers of CBSE tool support. At the lowest functional I
level, automated tools accomplish a specific task in a 1) Integral role with process. Industry tends to
particular phase of the system life cycle. An automated focus attention on those documents that are delivered to
requirements capture tool is an example of such a tool. the customer, but each and every artifact of the process
At the next level, tools assist the systems designer is an element of system documentation. Engineering
accomplish many tasks across many phases of the life drawings, test reports, software source code,
cycle. A requirements tracing tool provides this level of requirements tracings, defect tracking reports, and many
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other such "documents" are a part of what we do. To ACHIEVABLE SYSTEMS ENGINEERING
date, industry has focused little attention on the integral IMPROVEMENTS
role of capturing all these artifacts as part of the CBSE
process. Significant change will occur only when Developing and using complex systems requires
industry integrates methods and tools to support major capital investment. Industry must make invest-
improved processes throughout the CBSE life cycle. ments in large systems wisely, with thorough

2) Designed and automated approach. In part, consideration of what the system is to do, the rewards
the weak role that process automation has played in for doing it, and an investigation of feasibility. The
CBSE is to blame. Without necessary databases and systems engineer must ensure that he/she has
automated tools, control and maintenance of thoroughly captured user needs and defined a feasible
documentation is tedious, repetitive, and prone to system design that meets all system requirements and
human error. The introduction of general purpose tools constraints.
such as word processors and electronic spreadsheets has Industry must act expeditiously to improve systems
contributed to improved performance in this area. A engineering by advancing CBSE practice. Corporations
"through-designed" approach is needed into which these can implement each of the following suggestions today.
general purpose tools would be fitted.

CBS Modeling. Various modeling approaches
Interpersonal Communication. Table 10 summarizes augment text specification with semantically precise
the state of interpersonal communication. representations for engineering information. There is a

gap between current text-based practice and future
Table 10. State of Interpersonal Communication model-based practice that must be closed quickly and

economically. Closing the gap means an extensive

STANDARD ADVANCED RESEARCH culture change and substantial retraining.
PRACTICE PRACTICE NEEDED Retraining efforts must target methods and

notations that engineers can readily learn, as retraining
1)Diverse team: I)Concurrent 2)Defined roles costs usually dominate transition costs when
Same syntax/ engineering 3)CBSE as implementing new methods. If at all possible, new
different 4)Training integral part of notations and methods should evolve gracefully from
semantics systems notations, methods, and concepts currently in use.

I_ I_ engineering A Defined Process. The engineering process includes

1) Diverse team. Successful application of the a sequence of process steps, and policies for process

systems engineering process hinges on the abilities of a control, documentation, and staffing. Industry should

diverse team of specialists to communicate with a define the process in layers to separate engineering

common viewpoint. This is especially true when the steps from alternative methods of control, docu-

product is a CBS, as diversity of backgrounds adds mentation standards, and staffing choices. Layers of

complexity to the communication process itself. description may include:

2) Undefined process. Software engineers, as 1. Description of process steps.

detail design engineers, perceive that their interface 2. Description of the control process and

with systems engineers is poorly defined. The problem organizational groups or boards that perform control.

lies in a lack of precise definition of the allocation 3. Description of representations used for

process and the failure to trace software specifications information captured at each step of the process.
to the top-level functionality of the system. 4. A mapping of each step and representation onto

3) Component view. Another cause of difficulty tools that automate that step.Compnen vie. Aothr case f dificlty 5. Description of the staffing of engineering
is the view that software, computer hardware, and

communications assets are component pieces of the alternatives.
systems engineering discipline rather than a whole. 6. Description of the review process and

Systems engineers find it difficult to break out of this information used for review.
partitioning paradigm, and software engineers are not Industry should base the systems engineering

apprised of the tradeoffs and design decisions. process on a set of models that define engineering

4) Cross-training needed. Academic and in- information in a way that computers can capture for

dustry in-house training programs for systems and interpretation, execution, consistency, and correctness.

software engineering must take a more interdisciplinary The process should support one-time entry of in-
view, share some common courses, and work toward formation, both for new designs and for changes.
the develop~ment of a common set of semantics. Dynamic Analysis and Simulation. Industry should

capture the behavior of systems in a representation that
can be executed dynamically for analysis. This ability
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gives rigor to the system description. Developers Dr. Stephanie White, Principal Engineer, Software
should apply the same representation to scenarios that Process, Grumman Corporate Research Center, Mack
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In addition, industry should use simulation to prove engineering tool RDD, Ascent Logic Corporation; Dr. I
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heat production, heat dissipation, reliability, time in Computer Aided Systems Engineering, University of U
response, and memory size from a parent component to Kansas; C. Stephen Kuehl, responsible for systems
subcomponents. They should use methods and tools to engineering process improvement for V-22 Post
track these budgets, and should compare design, Deployment; Logicon Strategic and Information
simulation, and test results to budgeted specifications. Systems; David Owens, Senior Systems Engineer,

Software Productivity Consortium; Allan Willey, in
Metrics, Costing, and Tracking. Metrics, costing, and charge of process improvement, Cellular Infrastructure
tracking are essential both for short-term decisions and Group at Motorola.
for long-term continuous process improvement. Well- I
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EXCHANGE OF INFORMATION BETWEEN DESIGN CAe-TURE AND DESIG;N
OPTIMIZATION TECHNIQUES: THE DESTINATION INTERFACE SPECIFICATION

by
Insup Lee, Evan Lock, Rajesh Purushotharnan, and Moon Lee

Abstract

This paper describes the DESTINATION Interface Specification (DIS). Design Structuring and
Allocation Optimization (DESTINATION) is an ongoing research project at the Naval Surface
Warfare Center (NSWC) to provide a new methodology for design optimization anc t:ade off
analysis of real time systems. The need for DIS arises from the inherent adaptiveness of the
DESTINATION system to a wide range of source and target tools. DIS not only allows
DESTINATION to coexist with various systems but also dictates standards for a comprehensive
way of capturing design information. The basic structure of DIS reflects a method of
exLracting/incorporating design information that is otherwise not available across a collection of
tools. DiS accommodates the identification of additional design information, allowing for
customization of the source and target tools. The focus of the DIS research and development
work is currently in the area of system logical modelling and implemenr:Ition modellin2.

1. Introduction

One of the primary thrusts behind the Systems Design Synthesis project of the NSWC's
Engineering of Complex Systems Technology Block Research Program (ECS) is to provide a
new methodology for systems engineers in the area of Design Optimization and Trade-Off
Analysis. Systems engineers require such a new methodology to cost effectively construct and
maintain increasingly complex mission-critical, real-time systems.

Application complexity has increased not only due to functional demands, but also because of
technological advances. The present and future combat systems must respond to an expanding
theater of commands, as well as the requirement to perform in an integrated manner.
Technologically, the advent of parallel computers and high speed networks opens many
opportunities to provide greater defense capabilities. These functional and technical factors
greatly increase the design space that the systems engineer must explore in search of a design
that satisfies all requirements. The idea behind design optimization and trade-off analysis is to
provide the systems cagineer with the necessary tools and techniques to systematically evaluate
and exploit the vast design space.

DESTINATION is the name given to the NSWC research effort that focuses on developing the
necessary tools and techniques to support such a methodology for design optimization and
trade-off analysis [HoNH]. The emphasis on this project is design structuring and resource
allocation tools and techniques. The design structuring involves making decisions regarding
decomposition/recomposition and fragmentation/defragmentation of hierarchical designs.
Resource allocation includes the mapping of logical design objects onto implementation
resources in a near-optimal manner.

The need for an interface specification to perform design optimization first arose on a
predecessor project to DESTINATION called EDA or Expert Design Advisor !HoHNI. The first
version of the interface specification, developed for EDA, was used to standardize the format of
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The human systems engineer plays a critical role within the methodology The ',,,terms
engineer's input is fundamental for selecting the subject (Of design Optimization and cvaluation.
applying analysis techniques and interpreting restilts, The metholdology supponrts the systerns I
engineer by making characterizations and recommendations. The systems engineer may accept
or override these outputs. 3
A complete scenario of steps can he mapped into the context diagram to d,.scribe the
methodologyI

1. The systems engineer gives a directive to select a design capture view (Ir analysis

2. DESTINATION interacts with the systems engineer to determine the following:. I
a. System characterization.

b. Formulation of design goals.

c. Application of design rules.

d. Recommendation for use of simulatiotioptimiation tools and techniques.

3. The system's engineer directs DESTINATION to import the necessary data t')r the 3
selected simulation/optimization tools and techniques,
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4. Results from simulation/optimization are expoited to DESTINATION for evaluation.

5. When satisfied with the achievement of design goals, any modification to the design
capture views are imported to the Design Capture system to maintain consistency.
Although these steps are listed sequentially, it is expected that there will be a high
degree of iteration within and among these steps, particularly when performing trade-off
analysis.

Many approaches have been followed that specify what to capture, such as, structured analysis
and design [WaMe], object-oriented design [BOOCI, and how to capture it. One of the most
robust approaches to be defined, which is consistent with earlier DESTINATION research
efforts, was jointly developed by NAVSWC and Trident Systems Corporation ([Karc], [Hoan]).
This approach to forward design capture represents one set of information that may be
incorporated into the DESTINATION methodology for analysis. Though DESTINATION is not
restricted to any particular Design Capture approact,, the NAVSWC/Trident approach is one of
the most robust and places the strongest demands on DESTINATION, so it is advantageous to
use from a research prospective. Furthermore, use of this approach insures integrated results
within the System Design Synthesis project of the ECS block program.

Basically, the forward design capture acxepts design information according to three models: the
conceptual model, the logical model, and the implementation model. Each is described below.

The conceptual model captures the operational ideas of the system from the per,,,, ctive of the
operational environment and information modelling. The environmental view establishes the
conditions and environment in which the system must operate including a description of the
system architecture's scope and boundaries, test plan, and operational scenarios. The conceptual
model allows the system engineerin- team and the customer to form a clear understanding of the
subject system.

The logical model includes a description of the functional and behavioral views of the system,
without regard for any particular implementation decisions. The emphasis within this design
capture model is on what the system should do as opposed to how it should do it. The
behavioral view provides an understanding of the system from a dynamic perspective.

The implementation model documents the hardware, software and human resources which
represent a particular embodiment of the system under desigr. The hardware architecture
describes the physical resources of the system including the components, interconnection
topology and protocol, and rationale for selection. The software architecture describes the
Computer Software Configuration Items (CSCIs) and the executable software tasks including the
messages passed between tasks. The human resource description includes the number of
personnel required to operate the system under various conditions and the level of training and
experience for each operator.

There is no restriction on what design methodologies may be used within the development of
any of the three models.

Likewise, any number of simulation/optimization tools and techniques are available for use
within DESTINATION. Optimization algorithms that may be applicable for use include
computation/conmmunication-oriented, genetic search and simulated annealing. Simulation
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techniques that may be interwoven with the optimization algorithms include petri-net simulation I
(e.g. SES/workbench, ADAS), queueing theory [CCCC], and general purpose simulation
languages (e.g. Simscript). Future advances in both optimization and simulation are to be 3
expected.

2. Requirements of the DESTINATION Interface Specification (DIS) i
As described in the previous section, the DESTINATION Interface Specification is the layer of
data structures and export/import routines that permit application information to flow in and out I
of DESTINATION. From one perspective, DIS bridges the design capture facilities with
optimization decisions and from another perspective, DIS integrates the execution of simulation
models and optimization algorithms with design evaluation and recommendations. This iterative I
path of capturing, modelling, evaluating and recommending becomes significantly more
streamlined by having a consistent and robust medium of exchange. 3
A number of requirements impacted the development of DIS. These requirements can also be
viewed as motivating factors for making the investment in DIS.

1. Tool Independence

It is desirable to have a methodology be independent of a particular toolset. There may
be financial and training constraints that oppose acquiring a toolset, particularly when
a comparable one may already be in place. In the context of design capture, for instance,
there are several Front-End Computer-Aided Software Engineering (FE-CASE) tools that I
are operational within Department of Defense (DOD) programs, most notably, Cadre's
Teamwork and IDE's Software Through Pictures (StP). The interface to DESTINATION
should handle data from Teamwork just as easily as data from SWP.

Certainly, as part of the access routines into the FE-CASE system's repository, there will be
some effort that is not reusable. The goal is to minimize this effort. Figure 2 shows how I
this is done in the context of interfacing with Cadre's Teamwork.

I
I
I
U
I
I
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repository representing the information contained within the CASE graphics (bubbles, flows,
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connections, etc.) The two information sources, the Front-End CASE dependent data and the I
Front-End CASE independent DOI, are then merged to create a DIS compatible file.

A similar, though possibly more complicated, choice of tools to develop interfaces exists
within the Simulation System/Optimization Technique domain as in the FE-CASE area.

2. Implementation Independence I
The DESTINATION toolset contains many interconnected subsystems, such as for design
characterization, design evaluation, and for making recommendations regarding design struc-
turing and resource allocation. Development of these subsystems can proceed more indepen- I
dently by sharing the DIS among them.

Furthermore, developers of algorithms for resource allocation, scheduling, and design
structuring can utilize the DIS as a departure point for their innovation. DESTINATION I
then provides a convenient proving ground for determining the situations where the
algorithm performs best. This makes for a win-win situation for DESTINATION and 3
algorithm developers: there will be an increased likelihood that their algorithms will be
transferred to practical use and likewise DESTINATION's library of algorithms on which it
bases its optimization recommendations will progressively expand. It is expected that the
algorithm developers will, in turn, uncover additional requirements for the DIS and through
feedback DIS will progressively improve.

3. Supports Incomplete Information I
If optimization is to be performed on a bottom-up basis, there may be substantial informa-
tion that may not have been provided on a higher level. To proceed under these circum- 3
stances, default values can be associated with the DIS data structures and be supplied
as required by the optimization algorithms.

4. Gain Wide Acceptance
DIS must be designed so that it can be used widely, as described in Figure 1, by systems
engineers, algorithm developers, tool vendors and standards bodies.

5. Transportability
DIS should facilitate the transportability of design capture, design optimization and simula-
tion information from one computer environment to another.

6. Uniformity and Cohesiveness
The DIS model should be simple and uniform, while minimizing the amount of concepts,
types and classes of operations.

7. Implementability
Vendors of simulation systems, front-end CASE systems, and algorithm developers should I
be able to utilize DIS with only a reasonable effort. The design of DIS should allow

for flexibility in implementation while maintaining consistent operational semantics.

8. Extensibility !
As mentioned above, tool vendors, algorithm developers and systems engineers will uncover
additional requirements on DIS. DIS should not preclude any extensions to its scope
to satisfy evolving needs.

9. Performance
The DIS design must allow for efficient operation from both external access of design I
capture and simulation systems as well as from internal DESTINATION procedures.
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To satisfy these requirements, several basic design decisions for DIS were made.

i. Represent the data structures for easy mapping onto a flat ASCII file. This accommodates
the requirements for acceptability, transportability, implementability, extensibility, and per-
formance.

2. Utilize Ada as the language for formally specifying DIS. There were several underlying
reasons for this:

a. Ada is a DOD standard.

b. Ada is widely available on many computing platforms.

c. Ada's package facilities and specification/body separation could be used to express
multiple layers of abstraction.

d. Ada was very successful in its use as a specification language for the Ada Semantic
Interface Specification (ASIS) definition [BISp]. ASIS is a vendor-independent,
non-proprietary bridge between Ada libraries and Ada tools.

There are a number of alternative methods for specifying the interface. English was
dismissed as being two ambiguous. Use of formalisms like the Backus Naur Form (BNF)
and Extended Backus Naur Form (EBNF) has the advantage of concise accuracy allowing
little room for ambiguities and vagueness but does not allow high level representation. C
was not used because of its lack of abstraction facilities. C++ and Common Lisp Object
System (CLOS) are viable alternatives, particularly due to their strong object orientation and
inheritance facilities. Presently, they lack the standardization and DOD acceptance of Ada.
There are systems and associated languages that specialize in interface definition and
actually automatically generate some code necessary for declaring and accessing the
interface [NEST]. These facilities warrant further investigation, but are not DOD standards.

There are a number of potentially useful integration standards that are emerging, such as
PCIS, Case Integration Services (CIS), IRDS, CASE Document Interface Format (CDIF),
IEEE-PI175 and NGCR's PSSWG [StSh]. None of these efforts, however, are directly
working in the area of design optimization and lack representation of much needed
information. Through planned participation with these working groups and standards bodies
DIS should beneficially impact these efforts.

3. Components of the Interface Specification
3.1. Overview

The current version of DIS, 2.0. is divided into several packages at its top level. Each of these
packages is comprised of lower level packages. This basic structure, at present, is shown in
Figure 3.
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The following section describes the implementation model in greater detail with brief
descriptions of the structural components and the Ada data type declarations for some of the
major components. This is where the emphasis of the current effort has been Development of a
technical report describing the other packages is in progress.

3.2. Implementation Model

The implementation model contains data representations for making and analyzing decisions for
resource allocation and design structuring. Representations are needed for the following
information:

1. A task graph to depict the candidate software configurations.

2. A resource graph to depict the candidate hardware configurations.

3. Constraints derived from requirements. Constraints are presently divided into two catego-
ries: placement constraints and timing constraints. These constraints impact the effective-
ness of optimization. Each one of these types of constraints contain several sub-types
of constraints that will be described further below.

The implementation model of a real-time system consists of one or more implementation views
(i.e., a list of implementation views). The Ada type declaration for this information in the DIS is
shown in Figure 4. Each implementation view consists of a software structure diagram, a
hardware structure diagram and a list of mappings of software components to hardware
resources.

type DIS_implementationview type is
record

DISsw_structurediagram : DIS-aw structurediagram_ptr;

DIShw_structure diagram : DIS_hwstructurediagramptr;
DIS_implementation-mapping-list DIS_mapping.viewptr;

DISjimplementat ionview_next DIS_implementat ion view-ptr;

DIS implementation view-previous DIS_implementation View-ptr;

end record;

Figure 4: Implementation View Components. DIS_Implementation-view.previews
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The term structure diagram is used to reference a collection of directed graphs, drawn with i
respect to a selected methodology, that captures information about a set of components and their
relations along with any hierarchical decomposition. For example, a tree of data flow diagrams 3
may be considered as one type of structure diagram.

The list of mappings is provided, since for the same software and hardware structure diagrams,
we may apply different allocation tools to determine possible mappings. Each of the
components of the implementation view are further described below.

To better explain the data structures represented within the implementation model, graphic I
figures have bee.. provided. Figure 5 contains a legend of the graphical notations. In Figures 6,
10, and 11, there are three types of edges connecting the data structure: I

1. A points to relation to indicate that a structure contains a variable which
points to another data structure. There are two types of points to relations
(edges). The first type represents decomposition through a contains or is con- I
tained by relations depending on the direction of the arrow. Typically, the
contains relation points downward (vertically) on the page and the contained
by points upward (vertically) on the page. The decomposition implies that I
when a data structure contains another data structure, the former data struc-
ture may be viewed as the parent and the latter is called a child. The second
type denotes a has relation and does not involve a notion of decomposition
into child entities.

2. A references relation when two structures show a common data element. 3
3. An is linked to relation showing that the data structure is part of a linked list.

For each of these relations there are two pointers--one for the next occur-rence in the list and one for the previous occurrence in the list. This double
linked list structure allows for reduced programming in traversing the list.

3.2.1. Software Structure

Figure 6 represents the software structure architecture. The data types for the software structure
is shown in Figure 7. Each software structure diagram is represented by a list of modules and a I
list of edges between modules. A module represents a collection of nodes and edges within a
structure diagram (as explained above). Again, using the data flow diagram as an example, a 3
module could be considered as a level of decomposition.

i
I
I
U
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Data Structure (shading implies a list)

Contains relation

Has relation

Is linked to relation (including, next and
previous)

References relation

Figure 5: Nodes and Edges Used to Describe DIS Components.
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type DISswstructure_diagram is
record

aw_structure diagramname : DISswdiagramname-type;
swstructure.diagram_id : DISsw_diagramjid-type;
sw_modulelist : DISsw_moduleptr;
sw module_edge-list : DISsw moduleedge-ptr;
swstructure.diagramnext : DIS sw structurediagramptr;
sw-diagramprevious : DIS-ow_structure-diagram-ptr;
parent_implementation_view : DISJimplementation_view-ptr:

end record;

Figure 7: Software Structure Data Type.

Software modules can be nested and each module includes its own task graph. Task graphs
cannot be nested since the node of a task graph cannot be a module. However, nested relations
between tasks can be captured using nested modules. Our view is that the task represents a
separately executable computational entity.

A software module contains the following information:

1. The hierarchical, sibling and nesting relations between modules.

2. The identity of task graphs that belong to the module. In addition, there are two special
kinds of edges (called entry-super-edge and exitsuperedge). They are used to identify
the entry and exit points of the task graph at the module level.

The data type for a software module is shown in Figure 8.

type DISsw module-type is
record

moduleid DIS sw module-id-type;
modulename DIS_name type;
parent sw structure : DIS sw-structurediagram_ptr;
parent-module DIS-sw module-ptr;
nextmodule DISswmodule-ptr;
previous-module DISsw module ptr;

submodulelist DISsw_module_listptr;
-- define links between super edges of the submodules.

sw_moduleedge list DISsw moduleedge-ptr;
-- Task graph belonging to this module.

task_node_list : DIS_tasknodeptr;
task-edge_list : DIS_task-edgeptr;
entryjsuper edge_list : DIS_t ask-edgeptr;
exit-superedge list : DIS_taskedgeptr;

end record;

Figure 8: Software Module Data type.

A task graph is a directed graph: each node denotes a schedulable computational entity and an
edge represents a precedence relation between two nodes. For each task node in the
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DIStasknode structure, there is a task input list to identify input data and task.output_list to
identify output data generated by the task. In addition, task-jredecessorlist identifies tasks that
execute before the task and task_successorlist identifies tasks that execute after the task. There
is an andor flag associated with the above four task lists that specifies whether all input (or
output) data are needed (or generated) by the task. This information is required by some
optimization algorithms. Each task may include timing information such as ready time, de~adline
and duration. In addition, it identifies resources it needs. For resource net.d•,
DIS_resource type identifies the resource a task needs and the amount it needs. For each task
edge, task.edge.data identifies the data associated with the edge along with the duration of
availability of the data. In addition, fromtasknode and totasknode specifies the source and
destination of the edge. 3
The declarations for the task node data structure and the task edge data structure are shown in
Figure 9. 3

I
I
I
I
I
I
I
U
I
I
I
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type DIS_task-node is

record

task-id :DIS -task_id~type;

task-name : )15_name_type;

task-structure :DIS -task -structure type;

task-description :DIS-task-description type;
-- Task data dependencies.

task input-and_or :DIS -and -or~type;

task input_list :DIS -data-type~ptr;

task-output and or : DIS _and -or type;

task-output~list : DIS_data-type~ptr;

-- Task precedence relations.

task-predecessor-and-or : DIS_and_or~type;

task-predecessor-list :DIS-task_node~ptr;

task-successor-and-or : D15_and_or type;

task-successor-list : D15_task-node-ptr;

-- Timing information.

task-ready-time :DIS_time_type;
task-deadline : DIS_time_type;

task-duration :DIS-time-type;

-- Resource needs.

task-resource-needs :DIS -resource~ptr;

task-max-replication :DIS -task_count -type;
task_buddy-task : DIS _task-node~ptr;

task-Priority :DIS-task-priority-type;

task-execution-probability :DIS-taske_eprobability type;
task-communication-delay_matrix :DIS-task_conun-matrix-ptr;

task-error-cumulation : D15_-task_error~type;

task imprecise error_convergence : DIS _task-error~type;

task-next :DIS -task_ýnode~ptr;

task-Previous : D18_task_node ptr;

end record;

type DIS-task-edge is

-ecord

task_edge-id :DIS__task-edge id-type;

task_edge~data : DIS-data-type~ptr;

from -task-node :DIS -task -node~ptr;
to a-.sk-node : DIS _task_zaode~ptr;

next-task-edge :DIS -task -edge~ptr;

previous-task_edge :DIS-task-edge~ptr;

end record;

Figure 9: Task Node and Edge Structure.
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3.2.2. Hardware Structure I
A hardware structure diagram defines a hardware configuration. A hardware conhgurftion I%
viewed as consisting of hardware nodes, connectcd by hardware links. [a.h n•lue is ieCurNselU
viewed as consisting of internal nodes that are connected by internal links. The •a.hitceltweu ol
the hardwaie structure diagram is shown in Figure I0. 3

DIShw
structure_
diagram

Contains 3

Contains DIShw_ ha_ DIS hk
Cgroup node type a sgroup link te t

Containss
ontains Contains'

DIS hw_ has DIS hw
nodetype link tyrP

has --- I
DISresource_
typeI

Figure 10: Hardware Structure Architecture 3

I
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3.2.3. Mapping Structure

mapping assignment consis!s of mapping constraints and task assignments. Figure 11
represents the mapping structure architecture. There are two types otf mapping constraints:
timing constraints and placement constraints. Each mapping constraint includes a preference
value that specifies the importance of meeting the mapping constrait,'; the magnitude of the
value reflects its importance.

S The data structure for mapping constraint is shown in Figure 12. There are four kinds of timing
constraints, each timing constraint is defined on a set of tasks:

3 1. comnplete .within t means that the sei of tasks should complete within i time
units of each other.

2. startwithin t means that the set of tasks should start within t time units of
each other.

3. contiletepath_within t means that the sequence of the set of tasks should com-U plete within t time units from the beginning of the sequence.

4. complete startwithin i for two tasks, A and B, means that B should start within3 t after the completion of A.

There are three kinds of placement constraints, each placement constraint is defined on a set of
3- tasks:

I. placetogether means that the set of tasks should be assi-gned to the same hard-
ware component.

i 2. place selparate means that the set of tasks should be assigned to different hard-
ware component.

3. place-at means that the set of tasks should be assigned at a particular hardware
component.

I
I
i
U
I
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type DIS mapping-constraint is

record
timing constraint :DIS-t-constraint;

placement-constraint :DIS~p_constraint;
parent-mapping..yiew :DIS__mapping~view;

end record;

type DIS-t-constraint-kind.type is (complete-within, start-within,

complete-path-within, complete_start_within);

type DIS_t_constraint-type is

record
t-constraint-kind :DIS-t-constraint-kind -type;
preference -value : DIS~preference~range..type;
time_value :DIS-time-type;

software id list :DIS softw id~list;
parent mapping~constraint :DIS mapping~constraint-type;
next-t-constraint :DIS-t-constraint~type;

previous-t-constraint :DIS-t-constraint~type;

end record;

type DlS~pconstraint-kind~type is (place~together, place~separate,

place-at);

type DlS~pconstraint-type is
record

p_constraint-kind :DIS~p_constraint_kind -type;
preference -value :DIS~preference~range-type;

hardw-id :DIS-hardw -id -type;
softw-id-list :DIS-softwý_idjlist;
parent-mapping~constraint : DIS-mapping~constraint~type;

next~pconstraint :DIS-p-constraint~type;

previous~p__constraint :DIS~p_constraint-type;
end record;

Figure 12: Mapping Constraints D)ata Declarations

A task assignment is the result of running an allocation algorithm on a set of software and
hardware nodes with a set of timing and placement constraints.

4. Future Directions and Conclusions

The development of DIS is in the first year of an on going effort. There are several tasks that are
planned for future development. These are elaborated below.

1. Library of services
In addition to setting up standards for data structures, DIS should also provide operations
such as load/unload, add, delete, update and queries.
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2. Importing results to design capture I
Provide feedback functions to incorporate the results of the optimization back into the
design without modifying the structural components.

3. Exporting results from Simulation/Optimization systems
Interface specifications components can represent results from simulation/optimization sys-
tems. This should not only enhance the process, but also provide a standard data representa-
tion for developing extract functions for the target systems.

4. Alternative representation languages 3
Use of high level object-oriented languages to represent DIS has the advantage of inheri-
tance, allowing a higher degree of reusability.

Additionally, now that several versions of DIS have been produced and, as it becomes more I
robust, participation in various standards organizations will begin. Involvement in the CASE
Document Interchange Format Working Group is expected to begin by third quarter of 1992. I
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Abstract

This paper will address issues related to the integration of the systems evaluation methodologies including
background, problems, and possible solutions. As systems and their development become more complex, it
becomes critical that evaluations and assessments of the system's behavior become an integral part of the system
development life cycle. An integration of the evaluation methods into the design capture will allow more of the
assessments to become a part of the design decisions of the system.

Introduction:

Current state-of-the-practice of the modeling and analysis methodologies provides fragmented use of the
capabilities that are available to the development cycle. Modeling and evaluation capabilities are not as closely
tied to the core of the design cycle as needed to provide a seamless path between design synthesis and system
evaluation. A designer who wants to test a certain part of the system (or some aspect of the whole system)
resorts to the evaluation capabilities to make an assessment of the system. To date, however, there are no
formal techniques to apply the information that is obtained from the assessment to the design specification
[CH0911. There needs to be a better information flow between design capture and performance evaluation
models. Although the narrow definition of performance does not include reliability, availability, and security,
this paper addresses these issues.

Currently, there is a large gap between the representations of design capture and performance evaluation
models, although there has been much research that has tried to bridge this gap (such as Teamwork and ADAS,
STP and SES Workbench). There are standards efforts like CDIF that are addressing the interchangeability
among CASE tools that may serve as an intermediate format between CASE representations and performance
evaluation models. These efforts are immature and do not address semantic issues for the most part.

One of the many problems with not having integrated capabilities in complex system development stems
from the fact that typically several contractors work on large projects. Not all of these contractors will use
compatible tools or methods. This type of a problem usually results in inconsistent design specifications and
incoherent system designs.

Within the performance evaluation environment, the size of the system under development (SUD)
becomes a quick limiting factor. The number of states in the state dependent representation will typically
increase at an exponential rate to the number of nodes. There have been many proposals that have tried to
address this issue starting from having a hierarchical representation of a behavior to a partitioning of the SUD.
Another possible solution may be to apply a sensitivity analysis early in the development cycle to identify system
parameters that greatly affect the performance with even the slightest change. In effect, a sensitivity analysis
identifies critical areas of the system that deserve a more detailed evaluation.
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Large complex computer-based systems are typically characterized as discrete event .vnamic systems
(DEDS). Since there is no single paradigm for DEDS, each of the modeling techniques offers advantages to
certain types of analyses, but not to all. Just as a design specification needs multiple views to provide a
comprehensive description of the system, a performance evaluation needs to use multiple models to provide a
comprehensive assessment of the system. For example, finite state machines may be suitable for some
communication protocol specification, but are not suitable when unbounded queues are present. Some claim
that a Petri-net can be used to represent any system. While this may be true, one can use other modeling I
approach to represent any system, although the representation may be so complex that it is incomprehensible
to everyone except to that designer. The suitability of the modeling techniques to perform certain assessment
is the salient requirement, making maximum use of the inherent characteristics of the modeling technique. The
ease of use (of representation and analysis) and available analysis capabilities may make it more beneficial to
use one modeling approach versus another. Therefore, it is apparent that to make optimum use of theevaluation capabilities, one needs to employ more than one model to represent and evaluate the SUD [GOE9lI.

The following sections discuss some of the ways that current research efforts have tried to address the
problems and issues discussed above. The first section discusses the use of multiple models and their integration
into the design process. The second section discusses the integration of performance evaluation models and idesign capture representations. The third section discusses the long-term goal of unifying the design capture,
performance models, and other specifications (such as requirements, implementations, etc.).

Transformation Among Models: I
DEDS do not have a single paradigm to represent the system. Each model that has been developed has

certain advantages and disadvantages. A systems engineer, however, needs information about the behavior of I
the system that typically requires more than a single model.

One near-term solution to the current limitations of a single model may be to use multiple models as
multiple "views" of the system--just as design capture ,tses multiple views to represent the design of the system.
Then, as is the case in design capture, traceability and a consistency become salient and critical features.

Each "view" has a set of evaluation criteria or metrics that it determines when evaluation methods are n
applied to the representation. For example, semi-Markov reward models can be used to perform reliability and
availability evaluation of the system [TRI911 or a stochastic petri-net to evaluate the dynamics, leadlock, livelock,
and reachability of the system. Each "view" needs to capture just enough information about the system to I
perform its assessments; hence, some of the overhead of carrying unnecessary information is reduced. Within
this framework, each "view" has to be consistent with other "views." A value of the parameter in one "view" must
be the same in the other "view," or an architecture in one model must be the same as that of the others. To
provide consistency, information of one model must be able to be traceable to that of the other. This is a
difficult problem because the appearance of the information may differ greatly among models (single parametersin one model may split and distribute across the other models).

The first problem within the transformation among models is that, even within performance models, there
are differences in the level of information detail. Some models are used to evaluate the steady state behavior
of a system and queuing characteristics, while others simulate the system performing functions. Some of theIdifferences in the level of information are due to the definition of the system by the user and others are due to
the limitations of the modeling scheme itself.

The second problem with the transformation among the models is that it is typically n~ot a one-to-one I
mapping. Therefore, when one model is transformed to another model and is transformed back to the original
modeling technique without modifications, this transformed model may look totally different from the original
model although be mathematically equivalent. There are also semantic differences among the performance
models that make the transformations difficult.

A long-term solution to maximizing the use of the performance evaluation models may be to develop an
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intermediate form of representation of the performance models (which is similar in theory to the intermediate
form of CASE representation). This intermediate form may just be a way to collect enough data for the
transformation into many performance models, or it may be an extension of any one of the modeling techniques.
One danger of having a single representation is that the evaluative and expressive powers of a modeling
technique may be lost at the expense of making extensions to the existing model. Another danger is information
explosion may occur by trying to add so much into this intermediate form.

Transformation Between Capture Methods and Performance Evaluation Models:

A transformation technique between a design capture representation and a performance evaluation model
attempts to use the performance model as a design specification as well as a guide in the design. Many design
decisions are made in the evaluation and assessment stages of the system development life cycle, therefore, there
needs to be a closer linkage between a design capture and performance model representations. A bi-directional
transformation between design capture and performance model would provide a means to validate the evaluation
results.

Our work in this area attempts to bridge the gap among the currently developing multi-paradigm views
of the system [HOA91], including a resource library, a resource allocation and optimization tool [NGU91], and
an intermediate form of a performance model. Problems that occur due to differences in the representation
include semantic inconsistencies, lack of information, and ambiguities.

Like most new tools and methodologies, design capture had a basic structure, and additions were made
to those structures to answer other questions or to address inadequacies (such as real-time extension). The
objective of design specification tools, however, differs from that of evaluation tools and therefore information
that is contained in the design capture differs from that of performance evaluation models. As such, there is
some information that is not provided in the current design capture, such as a resource model. This missing
information must be added to transform the design capture to performance evaluation models.

The second problem is also caused by the different objectives of these two representations. For example,
in the data flow diagram, the functional decomposition in the design capture stops when a systems engineer can
map a function to a resource (whether it be hardware, software, humanware, or a combination). However, even
at the lowest level of the functional decompositions, there may be a lot of ambiguities due to multiple inputs and
outputs of a single process bubble and a sequence of interactions of the processes. These ambiguities must be
removed for many modeling methods.

The flow of information from the design capture to a performance model is difficult. But having the
information flow in the other direction, from performance evaluation model to design capture, is more difficult.
This task, however, may be more crucial for the widespread use of the systems engineering tools. Once an
evaluation is performed, information obtained from the evaluation needs to be fed back into the design capture.
This information is pertinent to the decisions made at the design capture, yet there is a lack of formal methods
to feed back this information. There may also be design decisions made on the system during the evaluation
phase, on the performance model. These decisions also have to be reflected back on the design specifications.
This transformation also validates that the design matches the evaluation.

An example of the problem that may arise in a direct transformation from performance evaluation models
to design capture is separation of hardware, software, and functionality. When the design capture is transformed
to performance models, some of the functions are performed by the hardware, some are mapped to software
that gets mapped to the hardware, and some are mapped to humanware. Differentiating the changes in the
performance mo del (into what actually is a function and what is just a resource) may not be done automatically.

There are three goals which address this issue of having a bi-directional flow of information: short-term,
mid-term, and long-term. A short-term goal is to attach a note of the changes and pass it to a CASE
representation. The decisions on making changes then fall on the design capture side. A mid-term goal is to
semi-automate the transformation. Someone working with a tool like DESTINATION INGU91], which is used
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to perform resource allocations and optimization, has an access to both design capture representations and
performance evaluation models. Once the changes are made to the performance models, DESTINATION
resource candidate allocation may be used to map the changes. These changes may be as simple as the
reallocation of existing resources. In this case, changes will be identified in the resource candidate allocation,
and they may be made in the DESTINATION in a semi-automated fashion. The long-term goal is, of course,
to automate the process. f
Global Representation ?:

A global representation is not something that can be obtained today or tomorrow as much as it is a goal I
(or a focal point) to which the industry is moving. Whether this goal is achievable is questionable [ZAV91].
At this moment, there is a lack of a seamless process from requirements specification to design, evaluation, and
the implementation phases of the system development cycle. A global representation could serve as a
requirements specification and, if it is robust, could serve as a design specification.

At this time, there is research on forming a standard CASE data interchange format and some research
on developing pseudo-standard performance models. Convergence of these representations may be the unifying I
representation--harbingers of the global representation. However, these representation capture only a small

amount of the information needed.

.The first of many problems with forming a global representation is balancing the amount of information. I
The objective would be to have just enough information to specify the system, be able to perform analysis, and
use it to implement the system; otherwise, redundancies and information overload would arise.

The second problem is maintaining traceability of the information. The global representation of a system
contains more information than needed to perform certain functions (such as timing analysis); therefore, a
transformation would be used to perform these functions. After these functions are performed, any changes I
made must be reflected back to the global representation. Although the changes to the global representation
would be guaranteed by the correctness of the transformation, there needs to be a way to trace the changes in
the global representation to insure that other aspects of the system are not affected by those changes.

Conclusions:

The issues that are addressed in this paper are not by any means complete. They do represent some of
the major issues that have been encountered in this on-going research effort.
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1. INTRODUCTION

Top-level system requirements are analogous to software requirements in many respects. The
purpose of each is to describe "what" is required for a system, subject to constraints, without giv-
ing details of "how" this should be accomplished. Historically the methods and tools for software
requirements specification have been adopted as also suitable to systems requirements [Dorfman
1990].

For a small, single computer-based system there may be little distinction between the system
and software requirements. However, for large complex systems the software comprises just some
of the components of what may be a distributed system with many hardware, software, and
human-oriented subsystems. Ideally the system requirements should be understandable both by the
customers (as C-requirements) and by the system developers (as D-requirements) [Rombach 1990i.
Developers require a precise statement of requirements that can be verified, i.e., there must be
some cost-effective procedure for determining whether an implementation sat-sfies the require-
ments. On the other hand, such a precise statement may require concepts and notations that are
unfamiliar to the customers. More realistically, one must be able at least to validate the require-
ments in some manner with respect to the customer's needs.

The SCR (Software Cost Reduction) methodology attempts to provide a basis for customer
as well as developer understanding of software requirements by the use of semi-formal representa-
tions and a well-defined set of of principles. The application of these principles is demonstrated in
a complete example of the software requirements of an actual Navy system: the operational flight
program of the A-7E aircraft [Heninger 1980, Alspaugh et al. 1992]. The formal representations
are largely based upon finite state machine models for representing the system behavior. The SCR
methodology emphasizes an external "black-box" view of the system without any premature,
design-level partitioning of the system.

In light of these objectives of the SCR methodology, we propose extensions to that methodol-
ogy to handle system requirements rather than just software requirements. These extensions are
based in part on [van Schouwen 19901 and [Rose et al. 1991] with additional insight from [Clements
et al. 1992] and [Hester et al. 1981].

We first introduce some general principles that guide our development of a systems require-
inents document. Next, we outline how these principles can be used to organize top-level systems
requirements following the pattern of the SCR methodology. Details of much of this organization
are yet to be determined; much of our focus in the discussion below is on the issues to be resolved.
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2. GENERAL PRINCIPLES

" Tile specification should anticipate likely syyv.em changes (e.g., changing requirements, Mimi]l 3
subsets to be expanded later, changing hardware characteristics, etc.). To facilitpe this. the
emphasis should be on specif3ing a family of related systems rather than a single systern.
Likely changes should be clearly documented so that the succeeding system design can he n
tailored to make those changes easy.

"* The requirements specification should be organized to separate concerns. For example, likely '

system changes should be separated from the rest of the specification. Many forms of abstrac- 3
tion also promote separation of concerns as well as ease of change, e.g. symbolic representa-
tion of data values to separate concerns of representation and usage within the system.

"* Development of the specification should focus on the questions that need answering before
formulating the answers. Rather than prematurely giving an answer, it is appropriate to
record each unresolved issue with some convention such as "TBD."

"* To control redundancy, each entity should be defined in a single place (whether this be in the
specification per se, or at a higher level as part of a specification generator). As necessary
there should be automated control (e.g., macros) for requisite multiple copies of such entities
to preserve consistency. Examples from the SCR methodology are data types, system genera-
tion parameters, and terms.

"* The requirements specification should be a reference document; i.e. the emphasis should be
on finding specific information rather than giving a general overview of Ihe system. A general
overview may be included in this document or furnished separately. To facilitate use as a
reference document, various indices and cross references (or their automated equivalent in,
e.g., hypertext) must, be included.

"* Care should be taken that only requirements are included in the requirements document.
Premature design decisions must be avoided. Required design constraints should be clearly
marked.

* The requirements should be stated as formally ,.s possible since formal notations are more
likely to be consistent, unar, biguous, and concise.

3. TOWARDS A REQUIREMENTS STRUCTURE

We consider three broad areas of system requirements ISTARTS 19871: I
* Functional requirements describe "what" behavior is required of the system.

* Nonfunctional requirements are attributes of the system not covered by the functional I
requirements.

* System development requirements address the process by which the system is developed and
evolves over its lifetime.

The functionality of the system should be the focus in organizing system requirements
!STARTS 1987]. Nonfunctional requirements and system development requirements should not be
treated as second-class citizens but should complement the major structure provided by the func-
tional requirements. The mechanism for implementing this structure is left open. Requirements
specifications stored within a database all.w for flexibility in that many different, groupings of data
are available. For exposition we shall consider a division into chapters and sections with the I
undlerntanding that each chapter or section represents a logical view of the overall requir'ements
(latalja5e82
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Chapter 1: INTRODUCTION

The introduction includes such information as organizing principles, notations, a brief over-
view of the system, and synopses of the remaining chapters.

Chapter 2: FUNCTIONAL REQUIREMENTS

N\e partition the system under development into the environment within wh: h the system
will function, and the system itself. The Environmental State Variables represent the interface to
the environment. The System Modes provide the control model for the behavior of the system as
a simplification of the overall state of the environment. Finally the System Functions describe the
actual behaviors of the system as related to Environmental State Variables and the System Modes.

Section 2.1: Environmental State Variables

Environmental (state) variables Ivan Schouwen 1990, Parnas and Madey 1991] are defined in
this chapter. These time-varying variables model the external environment of the system. They
include physical quantities (e.g., temperature and pressureO, readouts of displays, and even human
user characteristics (e.g., typing speed of operators external to a system). Each variable is either a
monitored variable, which is measured as input to the system, or a controlled variable, which is a
quantity that must be controlled by the system, or a variable may be both monitored and con-
trolled. The environmental variables express the interface to the system as well as additional
relevant factors in the environment. It is important to include environmental restrictions (e.g.,
physical laws) in order that the environmental model sufficiently reflects reality.

ISSUES:

* How extensive must the environmental model (captured by the environmental variables and
restrictions) be? It must capture those aspects relevant to the system being specified; the res-
trictions should rule out system states that are impossible. It is perhaps better to overspecify
the environment than to underspecify it.

\What is the best way to structure the environmental variables? For which types of systems
may object-oriented techniques be useful in structuring the environmental variables?

Section 2.2: System Modes

A mode class represents an equivalence class of the overall system state, i.e., the individual
modes of a mode class partition the system-each system state belongs to exactly one mode.
Modes are useful in simplifying complex environmental conditions and in capturing useful history
of the system evolution. Transitions between modes correspond to the event of one or more
environmelltal variables having changed (or may be defined via conditions of the environment
rather than events). Several different mode classes may be useful in simplifying the expression of
system requirements. Modes should represent only externally visible aspects of the system state.
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Section 3.1: Design ConstraintsI

lDesign constraints Include dlescriptions of' the major syslem ,uhcomniponciil,, \hose Cu net munl-
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I constraints should be removable without affecting the rest of the du:.ulit-nt.

I ISSUES:

* Why not let a design constraint replace the more abstract requirement, which the le,-ign Wit-

straint refines? It may be tempting to take this shortcut in order to shortenli the requirentiltS

docurnent. This is not to be recommended since it muddles an abstract view of the overall
system due to the level of detail, and it makes changes to design constraints more difficult

Section 3.2: Other Nonfunctional Requirements

Additional nonfunctional requirements cover a broad range for general ssiemsl \Ve identify
I three categories here as examples:

* Interface constraints: hardware interfaces, software interface. mnanhiina( lne interfices
i(N u I's).

I Dependability constraints: safety, security, stochastic p)erformianlce, (leterinist icirf<,r-
mance. reliability, availability, accuracy, naintainability.

I*• Physical requirements: dimensional limits, power consumption. environnmental cond iticm
(weather, noise, radiation), climate control. etc.

As with functional requirements, care should be taken that these other non-functlon-al
requirements do not overconstrain the specification to rule out what might be acceptable designs

an(d implementations. For example, fault-tolerant computer hardware should be considered ax on(e
possible system design in achieving an overall system reliability.

I IS t.

I-How should nonfunctional requirements be organized? The many different fotms of nonfunc-
tional constraints in a general system differ widely in scope and interdependence

i To what extent can various categories of nonfunctional requirements ,be expressed formall'?
Is it. useful to have at least a formal syntax or template for expressing such requirements (or
would that be too restrictivet?

Chapter 4: SYSTEM DEVELOPMENT REQUIREMENTS

In building large complex systems the customer may also require specific methods, tools, and
procedures to be followed to ensure that the system development process is under control,

i
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Section 4.1: Required Subsets

Required subsets (e.g., phased deliverables) and variants of a system are documented here.

Appropriate information that may differ among subsets or variants may Include timing require-

menrts, hardware requirements, physical requirements, etc.

Section 4.2: Expected Types of Changes

Special care should go into documenting change within a system. It is important to record
fundamental assumptions ( i.e., those aspects and decisions that will never change over any system
meeting the requirements) as well as changeable assumptions. These two types of assumptions I
apply to all areas of the requirements specification.

Expanding upon these assumptions, there should also be rationale, as appropriate, gathered
(luring any analysis that preceded the establishment of the system requirements. Rationale is espe- I
cially important for system design constraints.

ISSUES: j
" Should fundamental and changeable assumptions be grouped together? It is probably clearer

to separate them. I
"* Are fundamental unchangeable assumptions necessary? One view is that anything not expli-

citly stated as changeable is implicitly unchangeable. We disagree with this view since impli-
cit assumptions are likely to be ambiguous.

" lHow much rationale should be included here (or in companion documents)? Some rationale is
necessary as a check that the recorded assumptions are valid. 3

Section 4.3: Other System Development Requirements

Other requirements in this category include life cycle concerns (e.g., testing requirements. I
documentation standards), installation procedures, project management, and quality assurance
[STARTS 19871. 3
ISSUES:

Similar to Other Nonfunctional Requirements. it is difficult to formalize - rocess-orientel I
requirements.

Chapter 5: GLOSSARY OF TERMS

This glossary covers all terms, jargon, abbreviattions, conventions, etc. that are normally used 5
within the general domain of the system (e.g- the avionics domain). The main purpose is to pro-
vide the specifiers with the requisite domain terminology for communication with the customer. If
appropriate, reference to standard glossaries of domain terminology (cited in Sources of Additional
Informat ion) may replace part of this chapter.
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Additionally special terms (bracketed by !---! in A-7E requirements) specific to this partictilar
project should be defined. These special terms provide a mechanism for consistently recordiing and
using names that might otherwise be confused with informal usage. Term definitions may range
from informal natural language descriptions to formal descriptions such as macros, mnemonics for
system parameters, or abbreviations for complex mode expressions. In any case a term is useful for
hiding details of a concept, i.e., separating the concern of where and how that concept is used
versus its detailed definition.

The terms defined here should be used consistently throughout the rest of the document to
aid in customer understanding as well as conciseness. For example, relevant terms should use the
same acronyms as those defined for the domain.

ISSUES:

* What is the best way to organize the different sorts of items in the glossary?

Chapter 6: SOURCES OF ADDITIONAL INFORMATION

This section gives references to all relevant publications related to the system specification
(e.g., computer manuals, appropriate standards, detailed hardware descriptions). It also records
names, addresses, phone numbers, etc. of all personnel involved as either customers or systems
requirements specifiers indicating their role or expertise related to the requirements specification.
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Abstract

The development and maintenance of real-time systems has become inore
and more important. However, the tool support for reuse of real-time compo- U
nents is by far not as elaborated and conceptually well defined as this would be

necessary. We present an approach that combines existing technology in soft-
ware reuse, formal specification, real-time schedulability analysis, and advanced I
matching techniques into a comprehensive framework for reuse of real-time soft-
ware. The basic concept is the reuse of software components which are stored
in a highly structured library system. A typical component exports a type and
operations to be used on variables of that type. Components/modules may I
be generic (i.e., parameterized by types, by operations, or even by other mood-
ules). To be used, modules must be instantiated. This structural elenient of
the Component Manager is based on experience withi two prototypes, the Soft- I
ware Archive [11, 9, 12] and the RESOLVE specification language [5, 2. 4]. To
support the formal specification of real-time software, RESOLVE is extended
with special constructs to express information regarding timing, periodicity,
etc. Within this context, we consider a mix of user-guided and automated re-
trieval/classification achieved by structural support and formal specification.
The results of this "local" matching effort are used to conduct an evaluation
("global" matching) by running an analysis of how (fie target system will re- U
act, with regard to its timing properties, to a reuse of the found component.
This paper gives an overview of the static structure used to specify the Coin-
ponent Manager. This part. of our work is based onj the Software Archive con- I
cepts. It also discusses extended RESOLVE, a language for the specification of
reusable real-time components and systems. Additionally, it presents a basic
algorithm for (automated) retrieval of components in the Component Manager
and presents the concepts of global matching with existing systems.

keywords: software reuse, component libraries, formal specification for real-
time, schedulability analysis, global and local rnaftthing. I

5
I
1
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1 Introduction

Software reuse is one of the main factors in increasing software productivity.
llwever, while we can see a wide variety of approved concepts and even a few
successful practical applications in tile area of business and information svstemis
[19], we still have problems in application domains where performance, timing
behavior, and other non-functional attributes are essential.

Our goal is to develop a reuse support tools that addresses these problems.
especially the needs and requirements of real-time systems development. This
paper presents the conceptual framework for this approach, discusses existing
prototypes and techniques, and integrates them into a comprehensive tool en-
vironment, the Component Manager.

There are four main elements in this framework that characterize our ap-
proach:

"* A highly structured library of components.

"* A hybrid mix of interactive and automated retrieval.

"* Special support for formal specification of real-time characteristics.

"* An evaluation of impacts on the target system.

The Component Manger is based on the weff-known and successful concept
of a library of components. However, this library is not flat, providing an
unstructured set of component descriptions, but relies heavily on an explicitly
defined classification structure. This structure is not only visible to the user but
it. is also specified and maintained by him. This static structure is tihe basis for
all other elements of the Component Manager and allows one to mix relatively
informal concepts with formal specifications.

Using both aspects. informal and formal elements, retrieval and classification
utilize the structure to provide the user with a highly flexible interface. It is
open to the users to decide if they want to use the system in a user-driven,
interactive browser-mode, or if they want to hand over to automated matching
algorithms that take a formal specification as input and match it to a formal
specification in the library. What is common to both alternatives is that they
rely on the predefined static structure to narrow the search space instead of
trying to match with all components in the library.

By mixing the informal and the formal model for reuse libraries [13], we
achieve a situation where the user can guide the system interactively by navi-
gating in the structure of the Component Manager without loosing the advan-
tage of machine support to handle bulk data. This hybrid approach allows one
a better fine tuning and guidance of the system functionality and is a possible
solution to the problem of inflexible algorithms that are targeted only towards
one aspect of the component description and can not handle other attributes.
e.g. timing specifications.
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To support this type of system, every component description must have a
formal and an informal part. The informal part is mainly used during the I
browsing process and takes the form of a multipurpose component description
that can be used in different classification structures (see section 2). The formal
part supports the automated retrieval, a task that can not be fulfilled by the I
informal, free format elements. The formal specification also includes special
constructs to define the real-time aspects of the component.

These real-time characteristics are not only used to decide if a component I
fits the needs of a user by comparing component description and needs state-
ment, they are also the major input to evaluate the found component(s) as part
of the target system. As opposed to the (local) matching of component char-
acteristics during retrieval in the library, this step recalculates the behavior of I
the whole system whose execution is influenced by timing and resource needs
of the currently evaluated component. This global matching can be seen as
an additional evaluation step which, if necessary, reorders the list of "locally" I
matching components.

Section 2 gives an overview of the static structure used to specify the Coin-
ponent Manager. This part of our work is based on the Software Archive con- I
cepts. Section 3 describes extended RESOLVE, a language for the specification
of reusable real-time components and systems, augmenting the informal concept
of the Component Manager and supporting automated retrieval and classifica-
tion. Section 4 presents the basic algorithm for retrieval of components in the
Component Manager and discusses aspects of the local matching algorithm. The
process of global matching, on the basis of incremental schedulability analysis,
and its relation to local matching is outlined in section 5. I
2 The Basic Structure of the Component Man- -

ager

The structure of the Component Manager is derived from a generalized view of
the software development process [9], and achieves independence from certain
applications or projects. Each Component is described as a unique entity and
linked to other components in the library by application independent relation-
ships [10, 12]. I

A component is not restricted to a representation on the source code level.
It may have any form of representation ranging from specification to source
code. Furthermore, potentially reusable components are classified according to
their level of decomposition, e.g., as systems or sub-systems. Similarity between I
components is described by using a generalization hierarchy with strict attribute
inheritance.

A component is a part of an existing system. It is reviewed for possible
reuse and incorporated into the Component Manager by classifying it, according

I
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to its structural relations to the other modules in the repository. A module
description - as far as it will be described here - consists of the following parts:

"* Contents definition.

"* Interface and placement/positioning information.

The contents definition includes the original description of the module, as
derived during its development process. It is the basis to define attributes
which are independent from a notational form used in a specific project. These
attributes, classifying the module, are also stored in the contents definition part
of the module description. They are of superior importance for determining
the location of the module in the repository structure and for manual retrieval
operations.

A standardized and generic specification of the component on the level of
"concepts" is used to define a normalized component description. These con-
cept level descriptions support easier understanding for the user and can be used
during the automated retrieval operations. Related to such a concept descrip-
tion, different realizations can be stored, providing design and implementation
alternatives.

The interface and placement description contains all information necessary to
determine the place of the module in the repository's structure, thus capturing
its relations to the other components. To support this goal, the gfobai struc-
ture of the Component Manager includes as its main e'ements a decomposition
dimension and a generalization dimension [10]. The decomposition dimension
classifies a module according to its level of system aggregation and is imple-
mented by PART-OF relations. The generalization dimension models similarity
between different modules (on one level of decomposition). It is implemented

by an ISA relation.
The structure of the Component Manager, with its main factors aggrega-

tion/decomposition and generalization/specialization, can be seen as shown in
figure 1. There exist different levels of decomposition. Each module is assigned
to exactly one of these levels (and may be linked to modules on other levels
by means of a PART-OF relation, not show in the diagram). On each level of
decomposition the modules are structured according to their level of abstraction
in generalization hierarchies.

The ISA relation is defined in terms proposed in [1]. It is a relatively static
form of ISA relation, including strict inheritance of attributes from ancestors
but excluding multiple inheritance. The attributes inherited are the classifying
attributes placed in the contents definition of the module. The attributes of all
related modules on higher levels of generalization are inherited and completed
by those derived from the current modules' contents definition.

Different points of view concerning similarity between components and/or
different ways to structure the search space can be expressed by the user-view
concept [12]. This concept of varying views for different groups of users on
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the same conceptual structure is comparable to the user-view concept used ill
database applications.

A user-view consists of components linked by ISA relationships, thus span-
ning the two dimensions of generalization and similarity-association (see fig-
ure 1). Using generalization and attribute inheritance, a class hierarchy of
(similar) components is constructed. All components in a user-view must be
classified to be at the same level of system decomposition.

If we take into account that the notion of similarity is a semantic concept.,
which is determined by the point of view of the user, we have to recognize that
it, will not be adequate to enforce the use of only one such classification scheme
on a given level of decomposition. Doing so would make it difficult or even
impossible for the user to structure the set of components according to his/her
needs.

Therefore, to support modeling of alternative generalizations and similar-
ity classifications, the Component Manager allows the user to build different
parallel user-views oil one level of decomposition. They provide the means to
define different classification structures, reflecting the different points of view of
different user groups (such as projects or departments).

This means that a component is classified to belong to exactly one level of
decomposition, but, may be used in different parallel user-views. The user-views
on one level of decomposition represent the set of all specified classifications for
the components on that level.

The main concept of the reuse support structure, as presented so far, is to

divide the search space (the set of all stored components) into user-views and
levels of decomposition. This structure enables a user to retrieve components
by browsing through the system by hand or by invoking an automated search
support algorithm. While the user can utilize most of the (rather informal)
information stored for each component, the algorithm will mainly rely on the
standardized formal specification which is part of the components' coiLent def-
inition.

3 The Specification Language

3.1 Basics of RESOLVE

Each specification is called a concept, and may have multiple implementations
(called realizations). A typical module exports a type and operations to be used
on variables of that type. Modules may be generic (i.e., parameterized by types,
by functions or operations, or even by other modules). To be used, a module
is instantiated by fixing its parameters and choosing one realization. We refer
to a module instance as a facility. Each module has an initialization operation
that executes when a facility is created, and initializes any state the facility may
have. Type initialization and finalization operations must be provided by the
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author of a module for each type that the module exports. rhes, operations.'
are required to simplify proofs of correctness of implementations and so that
each variable can be automatically initialized (or finalized) upon entry to (exit
froln) an operation that declares it.

In our work, reusable software components are specified using RESOLVE I
[4, 20, 5, 2], which is an acronym for Reusable Software Language with Veri-
fiability and Efficiency. In RESOLVE, every program type is modeled using a
standard mathematical type and operations oil the program type are explained
using notations from its mathematical type. Specifications are written using
predicate calculus and well known mathematical theories such as integer the-
ory, real number theory, boolean algebra, string theory, and function theory.
For example, the type List can be modeled using an ordered mathematical pair I
of mathematical strings, as shown below.

concept List-Template (type Item)
type List is modeled by I

<left: String (Item),

right: String (Item)>

initially, forall L: List, L.left = Lambda and L.right = Lambda I
procedure Reset(alters L: List)
ensures L.left = Lambda and L.right = #L.left o #L.right 3
procedure Advance(alters L: List)
requires L.right /= Lambda

ensures thereExists Y: Item, s.t., I
L.left = #L.left o Y and #L.right = Y o L.right

function AtRightEnd(preserves L: List) returns Boolean I
ensures AtRightEnd iff L.right = Lambda

procedure Insert(alters L: List; consumes X: Item)

ensures L.left = #L.left and L.right = #X o #L.right I
procedure Remove(alters L: List; produces X: Item)
requires L.right /= Lambda I
ensures L.left = #L.left and #L.right = X o L.right

procedure SwapRight(alters LI, L2: List);
ensures Ll.left = #L1 left and Ll.right = #L2.right and

L2.left = #L2. eft and L2.right = #Ll.right
end List-Template

Different mathematical theories can be used to reason about the behavior

and abstract structure of conccpts. In each concept, the mathematical model of

5
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the; type is stated and the initial value for variables of the type are giv(ji. ';li
interfaces of the operations and descriptions of their behaviors follow the type
description. Each operation has an optional requires clause, a pre-con(lition that
must he satisfied before the operation is invoked. Each operation also has aut
an ernsures clause describing the effect of the operal ion when the requires clause
is satisfied. Ensures clauses refer to the old values of parameters by preceding
their names with a pound sign (#).

The type List can be viewed as an ordered mathematical pair of mathemati-
cal strings (as shown in an earlier section of this paper). Considering the former
model, we see that the list is treated as two segments, left and right. When a
client of the List-Template declares a list variable, it. is given the initial value de-
scribed in the initialization section--an empty list. An imaginary cursor points
to the position in the list between the left and right portions. Thus, the Insert
and Remove operations affect the leftmost item on the right half of the list. The
Insert operation is described as the concatenation of an item onto the end of a
st.ring. Similarly, the Remove operation deletes the leftmost item of the right
string. Advance moves the leftmost item of the right string into the rightmost.

position of the left string. Reset moves the cursor to the left of the entire list,

and the operation AtRightEnd returns true if and only if the right string is

empty. The SwapRight operation exchanges the right portions of two different
lists, permitting implementations that provide efficient swapping of lists.

The RESOLVE specification language provides additional features that did
not appear in the specification of the ListTemplate. Items that can be declared

are mathematical constants, variables and functions. These are used only for
stating the conceptual view of a module, but typically have counterparts in

realizations of the module. Additional information that can be provided includes
constraints on behavior of the module, lemmas (to be used in understanding the
module and to simplify proofs of correctness), and the initial state of the module.
T'hese items are stated as assertions using predicate calculus. The definitions
of provided types (in the interface section) can contain such information as
constraints on states of variables having the type, lemmas, and initial and final
values. Parameters to a concept can be types (as seen in the ListTemplate),
mathematical functions, or other concepts. When a concept is passed as a
parameter, any operations and types that it provides, and anything defined

in its auxiliary section, can be referenced. To reference operations and types
provided by a concept parameter, they must be fully qualified. Additionally,
a concept can access anything passed as a parameter to a concept that is a

parameter to it. For example, if concept h is a parameter to concept g, and g
is a parameter to concept f, then assertions in g can reference definitions from
h; and assertions in f can reference definitions from g and h.

To assure that the correct parameters are used when modules are instanti-
ated, restrictions can be stated in the parameters sections of modules. Restric-
tions can be (1) TYPENAME TYPE-NAME or (2) CONCEPT-NAME =

CONCEPT.NAME.
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T'hese rest rictionis enable iiiodul,. de-signers to pre-vent 111rrCt usage alit

perinit static checks to be performied. For exansple, if a. ilodule! requirr'S t%%(.,
type paramieters, the miodule designer is permnitted to state lt,.e const ralit that
the types mnust be the saniv,'

ITIo provide hierarchies of comiponents, concepts (:an enhlance- other concepts
Ani enhancemnent. "Inherits" the defmiiitilons, types-, and operationis provided 1,N~
the enhanced concept. Additional operations and type#.s call be provided b%
the enhancemnent. For examnple, below we specify' and ina1plenlient, anl operation
that reverses a list. The reverse operation is secondary -zlieaning t hat it n' N
imiplemnented in termis of ope'rations provided by the List Temlplate

concept ListReverseTemplate enhances List-Template

procedure Reverse(alters L: List)
ensures L.left rT.ambda and L.right =(#L.left o #L.right)-R

end List-.Reverse-Template

RESOLVE is not just a spec i ticat ioii lAgiigua'it loIlal uI p-ra
izations of any% concept to be written1 Th'e P IKSOINE I nnilenwn1,1tatloll language-
has inany noteworthy feat ures, A'ssig uit(opIng foevralsvlet

another variable is not a part of thle language; instecad, swapping thle vle.of

I wo variables is tbe only built- in dat a inovenrietit primiltive. There are no glob~al

eters; local variables; and miodule variables (static variables associated witll)ibe.Ised peailscnacs heeknso aaoea o Iian

p~articular mnodule iiistatnce that are. shared, amtong ope~rationls exported by that
instance). Alia~sed variables cannot arise, ice, the data struct ilre repireentinlg
a. variable's value can only be kiiowti by one namie at any tiun. No types arc
built-in; therefore, almnost every statemient is a call, since every mnanipulation
of a variable whose type is provided by a reusable coinponeni. is achieved by a

call to a facility operation. Modules; cannot. be instantiated dynailically. I p
instantiat ions are declaratiomiu t hat orcur outside the Code of nioldiule opera-

tions, and all instantiations are performied when a programi beginls execuition,
Vurthermore, the types of variables are determnined stat ically, and I here are not

constructs in the language for expressing parallelismi.

3.2 Real-Time Aspects of RESOLVE

Languages such as RESOLVE [.51 allow miodule dlevelopers to stAIPc the, dura4-

tioii interval for operations exported by the mnodules. While this inforniat iou Vs
useful for reasoning albout. the execution tim~e of comiposite mnodules. addit oviol'a
language constructs are required to descrb ytm fra-iepoessW

allow systemn definitions to cont-aiii facility declarations, followed by global vari-
able declarations, and then process specifications. A process specification -onl-3
tains facility declarations, variable declarations and coder Additionally, each

process description iniay nient ion p~eriodicity. deadlines, and exttenial e~vents,
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Periodicity refers to the frequency with which repeatedly rxcuttl proce01-I~i
are performed. The syntax for denoting a periodic proc's-s IS.

every x seconds perform foperation 1(a, 1), c)

The period of the process is stated in secondIs The behavior of lhe pro,,:,i

programmed as the operation of a module".
A deadline dictates the maximun hitim that can elapse, from t h.- slt art of a

proce-ss invocation until its comiplet ion The deadline of it prritid ic jrc)kce.N J

,stated as:

eveiy x seconds perform f operation l(a, b, c) before y setconds e-lapse4

''lie! even i-driven process is ai imnportant part of iiiaii real-t infie vt '
Such a process typically has daldines. Additionally, there is iisliiall v a min iiinoun
amiount of tirme that must elapse betweenl occurrences of an , en eal.-

cveiti-driven processes to be codifioed as-

onl event e perform foperation l( a. 1. o-) before, y ' rls. at

most every z s!conds

A nother construct neceded Is the tinier. It allows s slt e evln r to ins'ert
delays into a processes code so that actliriis in thc controlled eii'~iroimiwi't cani
1w perforimed before proceeding with function of Olo- proce~ss TJo insert a
a component developer writes -delay x seconids"

Devices are often manipulated] by real-i inie svStene., Wv perrilii thil- b%
enicapsulating each device in a module. Thus, d-vice stalfStes ay be inspect .a
or altered simply by calling a module Operation.

4 Retrieval of Components - Local Matching

4.1 The Basic Algorithm

Utilizing the structural layout. of the repository and the power of concepts anid

realizations, the dynamic aspects of the Component Manager include all the
necessary utilities and user features to search for anl existing module in the
repository and to classify a new module.

Thie software engineer analyzing and( refining a given systern component is
the typical user interacting with the tool, lie searches for modules fitting his
demands, as derived during the development process, aiid provides tilie library6
with new modules not included in the structure so far [f)].

Whlie s'-arching in the Component Manager call 1he done by everybody who
nieeds an ex'sting system component. it is desirable to allow otilly a Speciall%-
trained person to incorporate new components. This role of a "component
administrator" can help to keep the systemn consistent and can avoid violating

prede~fined inttegrity or organilzatiotial rfles.
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Searching for and classifying components can be see'n verý iiuch as the sa.i ii

kind of process, only starting at different ends. As (lie discussion of both pro- I
cesses would go beyond the scope of this paper, only the retrieval is pre..-:ited
in some detail as described in figure 2. (The algorithm pr,,setited here iý- au
adapted version of an algorithm prcsented in [81.) I

Starting from given demands, i.e. the specification of a component, the first
step is to determine on which level of decomposition the counponent is ni ost

likely to be situated. This level of decomposition can be derived front the levl I
of decomposition the development process is currently working on

At the determined level of decomposition exist multiple user-views. After
picking one of them, perhaps based on a description of the classification st rategy

used in the user-view, a first approximation of the component searched for hast.
to be located. To do so, look for -ue of the very general components on top
of the generalization hierarchy and pick the one which is most similar to the
specification describing the demarids. If this component is not a perfect gnal ch. I
a recursive subtree search can start that takes this module as its starting point.

This search process will lead to more specialized levels of generalization with
more attributes and more information.

The search is oriented towards the ISA relations of the structure and follows
a path leading to refined but similar modules (as defined by the ISA-relations).

This allows appropriate reasoning about diffiireit possible solutions [3] and takes
advantage of the structured searclh space 71- T'he, qualiy of the re-sub. obtained I
and the ease of use of the tool rely to a certain degree on the correspondence
between the structure of the dcvelopment process and the struct ure of the Corn-

ponent Manager.
Many of the functions inc-orporated in the search process described above

can be optimized if they are interactively guided by the user. For example, to

determine if a given module is matching or not can be done best by the user who
knows exactly his current needs and the required degree of similarity- ltowever.
in principle all of the steps described in the algorithm can be done automatically.

If automated support is asked for, the component specification used as a goal
description must be a concept (or a realization) described in RESOLVE, to be .
able to match it to the RESOLVE concepts in the descriptions of components

in the repository.
The Component Manager merges both modes, thus providing the user with I

a hybrid environment. It is up the user to decide what to do by hatid and what.
to have done by the machine. Therefore, both extremo cases - pure manual and

pure automatic retrieval - are still possible. 3
4.2 Automated Local Matching of Formal Specifications

Automated local matching will allow a user to invoke, whenever necessary or 3
convenient, the automi•ated version of the supporting alg',rithnis providing

6
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PROC RETRIEVE-COMPl[ONENT '(LI3RA RN', COMiPONE'NT-SPE( )
FOUND: NO-MATCH.
DETERMINE DECOMPOSITION,-LE'VEL.
REPEAT

DETERMINE USER-VIEW%'
REPEAT

FIND-SIMILAR (COMPýONENTI-SIE.C,STIARTIN(;-P)OI N'l
REPEAT

EVA L U ATE(COM PON ENT-SP ECSTA I'l-IN G- POINTI)
IF (FOINI D i MATCH) THEN
SUIIBTREE-SEA RCII((X-ý1)M PO-;N ENT-SPEf-(.'STlA P'11N( ; M(I NI
Ff.

UNTIL (FOUND~kIATCII) 01?
(NO MORE ALTrERNýATIVE ST.\ICITING-POINTS)

UNTIL (FOUND=MATClI) ORl
(NO MORE ALTERNATIVE USER-VIEWS).

UNTIL (FOUND=MATCII) OR
(NO MORE ALTERNATIVE DECOMP11OSITIION-LEVEL',S)-

C:ORP RETRIEVE-COMPONENT.
PROC SUBTREE-SEARCII (CURRllENT-SPEC-.(,ANCEST'OR).

WHILE (FOUND j$ MATCH) AND
(EXISTS UNEVALUATED) DEPENDENT-COMPONENT)

DO
EVALUATIE(CURREIINT-SP)EC,DEPENDE,-NTý-C.OMPO.N EN'I-).
OD.

IF (FOUND i4 MATCH) ThIEN
WHILE (FOUND 96 MATCH{) AND
(EXISTS DEPENI)ENT-MODULE NOT USE!) AS NEW-ANCE'-1STOR?)

DO
FIND-SIMILARý (CURRENT-SPEC, NEW-ANCES1]01i).
SULITREE-SEAIICH (CU--RRENT--SPEC,NEW-A-\NCESTOII).
OD.

FL.
CORP SUI3TREE-SEARCII.

Figure 2: Searchin~g ill thle Con Ipon~en Managor
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him/her either with the "second opinion of another expert" or with the heljp 4f
a "clerk" who is taking over in a well defined situation. I

We expect a retrieval style that will utilize especially the automated versions
of EVALUATE (decide if a match is given), FIND-SIMIILAR (decide on the
level of similarity), and SUBTREE-SEARCH (evaluate all components in a
given subtree of a user-view's generalization hierarchy); see figure 2. All these
processes are, from the point of view of their control structure, straight forward
list or backtraking algorithms. The critical point is to decide if and to what I
degree a match is given.

To decide if a component is a (local) match means to compare the needs
statement with the component description. In the case of an automated re-
trieval, the needs statement is a concept or realization as descriLed for RE-
SOLVE. Thus, the comparison is done on the basis of the formal (RESOLVE)
specifications stored in the component manager.

The user of the component manager supplies a specification of tie module I
that is required from the library. The requirement specification does not net I
to be a complete specification, but the the likelihood of finding the dsirel
component increases with the degree of completeness of the specification. Whb.l I
the requirement specification is matched against a component in the library, th-,
user selects the realization of the component in the library that suits his needs.

Matching one specification against another is in geneial an unsolvable prob-
lemn However, in a great. many cases the problem can be solved, at least pat-
t ially. A grammar for the syntax of concepts has been defined, permitting th,
compilation of specifications. The assertions are machine processable if the
mathematical theories-their notations and operations-are formally defined. I
and if a base set of logic rules are hard-wired into the processor.

Many specifications describe abstract data type modules. To match two
specifications, one can check whether the mathematical models of the two ar.
the same. The number and kinds of parameters to the modules provide other
features for comparison. The number of operations can also be compared, as
can the interfaces, and the pre-conditions and post-conditions. One approach
to making the comparisons is to translate the assertions about the operations' I
pre-conditions and post-conditions to assertions about, a cannonical mathemat-
ical model, such as set, theory. This has the advantage that if a requirements
specifier chooses a different model for a data type than the specifier of the I
library component chose for the same component, matching is simplified. ttow-
ever, translation to a cannonical form may increase the number of terms in each
assertion, thus increasing the cost. of comparison 3

I
I
I
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5 Evaluation of Components - Global Match-

ing

While to match a non-real-tinie component specification can be done in a Io-
cal sense, at the interface level, to match a real-time component specificationl
requires more work since the introduction of such a component introduces indi-
rect timing effects on the rest of the real-time application. Predicting real-time
performance before the application is actually running is referred to as schedula-
bilziy analysis [14, 16]. Even when done for programs written in languages that
conform to time-constrained real-time languages, exact schedulability analysis
is NP-complete. Essentially, existing accurate algorithms are exponential in the
number of alternate conditional branches found in real-time programs and, in
the case of parallel real-time systems, in the number of PEs and software coin-
ponents in consideration. Furthermore, even polynom ial- time algorithms rnay
still be computationally-prohibitive, when the number of PEs and components
is very large, which is often the case with many modern real-time systems (such
as those in the C31 domain of applications, for example)-

We make the assumption that the code of components is amenable to static
analysis, as in Real-Time Euclid [6]. We assume that loops have been un-
rolled, that no recursion is used, and that conditionals have been balanced and
transformed [17. 181 to eliminate the number of alternate paths schedulabil-
ity analysis [14, 161 has to consider. We also make the assumption that the
call-DAG of components is statically-known. We require that tihe sizes of all
variables and object states be statically determinable. In particular, we employ
standard techniques used in RPC and distributed system implementations (such
as in SUPRA-RPC [151, among others), to compute the size of each operation
parameter. The direction of each parameter (IN, OUT or INOUT) is either
available from the language definition or is provided as a remote call annotationl.
Consequently, each component specification contains sufficient information that
describes how much time each operation of the component takes to execute.
what other operations of what components each operation of the component
calls and how many times, and how much data needs to be transmitted in each
direction on each call.

Given the interface description for the component being considered for reuse.,
a performance estimate of the entire system is undertaken in three steps. First,
the demand for each resource (PE, link, .,ensor and so forth) in the system is
projected. For every resource at the node where the component will reside, this
demand is computed according to polynomial-time heuristics, which project ac-
curate accumulated execution or communication demand due to every assigned
component within a certain interval of time (such as the least-cornmon-multiplo
of the periods of all real-time processes using the component) and estimate such
demand due to the components that have not yet been assigned. (Note that
even these are heuristics in the sense that the demands are accurate in the ac-
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cumulated sense only and not necessarily at any particular instance of time.)
Should there be sufficient time, the same heuristics are applied to nodes and
links neighboring this node. In systems with a large inumber of nodes, the cor-
responding demands (with the contribution of the component in consideration)
are only estimated in tle sense that individual nodes are not considered but
groups of nodes are, as 'mega-nodes" (one ;uch mega-node includes the node
of the component and its immediate neighbors). Should there be a very large
number of nodes, then the mega-nodes are combined into "mega-mega-nodes"
and so forth.

Once accumulated demands for every resource have been estimated, they
are easily converted into utilizations (by dividing over the size of the same time
interval over which they have been accumulated). Should any utilization exceed I
100%, the component is rejected as too time-consuming for the system. Oth-
erwise, the utilizations are in turn used to compute progress rates incurred by
individual or groups of processes when attempting to use a particular resource. I
Each rate is estimated as an expected value, where the expected probabilities
are the probabilities that (1) no request is made for the resource, (2) this process
is the only one making a request, and (3) other processes made their requests
when this component's request has come. The expected values for each prob- I
ability are, respectively, 100% (rate of progress), 100% and the fraction of this
process's contribution to the total demand for the resource.

Finally, response times of each process or a group of processes are computed I
as sums of ratios of each process's contribution to the total demand for a resource

over the rate of progress of the process for this resource, for every resource. The
response timnes are contrasted with the corresponding process periods. Should U
a response time exceed a period, (lie performance prediction has identified a

potential missed deadline, and the component is rejected as too time-consuming-
Should there be multiple components chosen by the same local match, the one
which maximizes the laxities (computed as sums of differences between periods
and projected response times) in the system is chosen.

To further speed up the performance estimation, demands, utilizations, rates
of progress and response times are computed incrementally. Typically, while rel- i
atively more work is needed to update the values of these metrics at the PE

where the component is to reside, little extra work is needed for the mega- or the
inega-mega- etcetera nodes. Furthermore, in systems where reusable component
selection is combined with the selection of the node to assign the component to, I
tie performance estimate incorporates a fast assignment algorithm that consid-
ers a fixed number of nodes from among the least utilized ones. The overall
performance estimating procedure runs in fast polynomial-time, and expected
to provide good predictions of run-time real-time performance. A quantitative

evaluation of the procedure is in progress. 3

I
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6 Conclusions

Exploiting the synergy between component library management techniques (the
Software Archive [11, 9, 12) and formal component specification (the RESOLVE
specification language [5, 2, 4]), the Component Manager strives to realize a hy-
brid tool supporting fully automated, partially automated, and manual retrieval
of real-time components. Going beyond the level of single components, a possi-
ble match is evaluated with regard to its influence on the timing properties of
the target system, using the concepts of schedulability analysis.

Ongoing research includes the testing of RESOLVE's practicability for spec-
ifications and designs. Work is also in progress to integrate RESOLVE into the
prototype of the repository and to refine its real-time extensions to serve the
needs of the presented two-stage matching algorithm.
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The Design of the MARUTI System*
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Abstract

The design of an embedded system to control the operations of a large complex real-time

system requires a comprehensive framework to meet the diversity of requirements. Such an

embedded system must provide support for real-time activities in a fault-tolerant and distributed

manner. In this paper, we discuss the design of such a system, called MARIUTI, and the guiding

philosophy behind it.

MARUTI is a time-driven system, in which resources are reserved for the real-time tasks

prior to execution. As much information as possible is gathered about resource and timing

requirement of a task so that appropriate temporal resource binding can be done. The resource

allocation and scheduling scheme was developed for a distributed system in which each node

may be a multiprocessor.

Fault tolerance is achieved through the development of resilient applications in a user-

transparent way according to a specified resiliency degree. Active redundancy is used in order to

reduce the recovery latency. The resilient applications are allocated onto the distributed system

taking ;4ito consideration the timing and fault tolerance constraints as well as the characteristics

of the .istributed environment.

The MARUTI system has been designed to assess .the applicability of techniques for real-time,

distributed, fault tolerant systems in a cohesive and comprehensive environment.
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1 Introduction

Many large, complex systems consist of numerous components which must interact in a controlled I
manner. An embedded computer system is used to perform the control functions necessary for

successful deployment and operation of such systems. In order to meet the control requirements, I
the embedded computer system must provide support for reliable operation of the software which

runs on it. Further, the software must operate within real-time constraints to monitor and generate 3
control signals.

Many of the embedded systems have been designed using the event driven approach in which 3
the system reacts to the events from within or those generated by the environment. Such a system

executes the appropriate software in reaction to the these events. The events are processed on the

basis of priorities assigned statically or dynamically. However, such priority based operation does I
not always guarantee a timely execution. In a time driven system, all executions are carried out

during specific time intervals chosen to assure the timely execution. In this paper we present the 3
basic philosophy behind the design of MARUTI, a time driven system that operates in a distributed

environment while assuring the requested fault tolerant behavior. 3
An embedded system in operation usually executes a limited set of applications in a restricted

environment. Not all such systems are closed systems in which all applications and their execution

characteristics are known at the design time. Many of them have to accept processing requests made I
during the operation of the system. The methodology developed to design an embedded real-time

system must encompass many characteristics. Since embedded systems have varying requirements, 3
the design must be general enough to be able to adapt to a large variety of operational environments.

On the other hand, it must be able to support the implementation of control functions of a specific 3
system in an efficient manner.

When an embedded system has to meet real-time requirements and provide support for fault-

tolerant, distributed, and heterogeneous operation, many of the techniques developed for addressing

these requirements in isolation are often contradictory. Systems must be designed taking into

account all these requirements and integrating their solutions throughout the system design. In 3
MARUTI we are attempting to address these requirements in a comprehensive manner.

The starting point in the design of MARUTI has been a careful consideration ,-fthe characteristics 3
of the applications to be supported on it. In the next section we present a brief description of

the application characteristics and the resulting system requirements. The design has followed a

consistent philosophy which is presented in Section 4. This is followed by the user's view of the

application. In Section 6 we present the process to be used in the development and operation

of applications taking into consideration all the requirements the applications may have. Sonic
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concluding remarks are presented in Section 7.

2 Related Work

In order to put our work in perspective, in this section we discuss a number of other efforts which are

aimed at meeting the requirements of real time operating systems. The discussion is organized along

the lines of major requirements and how they are addressed by ARTS[19], Alpha[51, CIIAOS[15, 16],

HARTOS[9], Spring[18], MARS[7] and RT-Mach[201 systems. Research in ARTS, RT-Mach and

Spring is directed towards predictable service in distributed hard real-time environment. CHAOS
is designed to support adaptive hard real-time applications, while Alpha is designed for supporting

mission critical computing in large, complex, distributed systems with a benefit-accrual model for

real-time. Research in HARTOS is focused on fault-tolerant communication in a hexagonal mesh

interconnection network.

Hard Real-time: Commercial real-time operating systems, such as Real Time Unix (RTU) and

LynxOS, address the real-time requirements by providing an interrupt-driven kernel, fast context

switching and a priority-driven scheduler. They do not, however, provide hard real-time guarantees.

The Spring kernel and the MARS system are time-driven systems that pre-schedule the critical

(hard real-time) tasks. These tasks are the only ones guaranteed to execute within their deadlines.

ARTS and RT-Mach use fixed priority scheduling with static schedulability analysis to ensure that

deadlines of hard real-time tasks will be satisfied at execution time. CHAOS and Spring support

dynamic real-time scheduling for online guarantees.

Distributed and Heterogeneous Operations:

Several of the real-time systems, such as ARTS, RT-Mach, Alpha, Spring and MARS, provide

support for distributed operations but not heterogeneity. Spring uses homogeneous multiprocessor

hardware with shared memory, while ARTS operates on top of Mach in a distributed homoge-

neous environment. RT-Mach is a modified version of MACH[1] and also provides a distributed

environment.

Fault tolerance: Support for fault tolerance under real-time constraints has not been exten-

sively researched. ARTS provides support for exception handling as well as timing errors whereas

Alpha provides data replication as well as process migration for fault tolerance. However they do
not address the impact of these techniques on timing characteristics of applications. MARS sup-

ports hardware level fault tolerance, using active replication. HARTOS provides for fault-tolerant

communication.

Clearly most of these systems address only a subset of the requirements for advanced hard

real-time operating systems. The goal of MARUTI is to develop a comprehensive framework for

611



I

addressing the hard real-time and fault tolerance requirements in a heterogeneous, distributed

computing environment.

3 Application Characteristics and System Requirements 3
The design of a real-time system takes into consideration the primary characteristics of the appli-

cations which are to be supported. Note that these characteristics are derived not ju!t from the 3
real-time applications implemented today but also those anticipated [17]. The characteristics of

real-time applications which play a crucial role in the design of the operating system are idertified

below.

Timing Constraints Real-time applications have various kinds of timing constraints. In hard 3
real time applications, tasks must be completed by the specified deadline for correctness.

Overrunning a deadline is considered a failure and cannot be tolerated. Although, soft real

time applications also have deadlines, overrun deadlines can be tolerated to a certain extent.

A penalty is incurred when a deadline is missed in soft real-time applications. In additi(. 11,

the real-time system may also be required to execute some jobs which do not have any

timing constraints. In many system the hard real-time, soft real-time as well as non real-time

applications must coexist. _

Criticality Many real time applications are safety critical. Examples of such systems include

nuclear power plants, life support systems, etc. A failure to perform the critical tasks suc-

cessfully can result in disastrous consequences. A real-time system must provide support for

fault tolerance and exception handling capabilities for increased reliability and tolerance to 5
failures, while continuing to satisfy the timing requirements.

Distributed Real time applications envisaged today are distributed in nature and some of their I
components must execute concurrently. A natural way to support this requirement is to have a

distributed system, which is a collection of processing nodes connected via an interconnection 3
network. Each node in the system may consist of a variety of resources incl'iding one or more

processors which may be of heterogeneous architecture. The distribution of the system may 3
also be required to support fault tolerant operation.

Deterministic Execution Profile Hard real time applications require deterministic guarantees, 3
and thus worst case bounds on their execution times and resource requirements must be known

for appropriate resource allocation. This forbids the use of unbounded loops and recursion 3

6
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rnents of an application contain the placeholders for all the resource and timing information. The

values to these placeholders are assigned as early during the development phase as they car- th,

assessed, refining them as the application development process proceeds.

Principle 3 All resources needed by a hard real-time application must be r-cscrvcd prior to cxicu-

I tion.
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in the software, which, in general, characterize non-deterministic resource consumption. Fur-

ther, to prevent unbounded waits, the synchronization of the programs should be known and

addressed explicitly.

Scenarios Many real time systems operate in certain well defined modes, which we call scenarios.

The system exists in any one scenario at a time but may switch scenarios when a triggering

condition becomes true. T'his requires the system to have the capability to switch between

different scenarios.I
4 Maruti Principles

Recognizing the complexity of the requirements posed by the characteristics of applications Ave

formulated a few basic guiding principles for the design of MARUTI. In this section we present these

principles and a brief rationale for them.

Principle 1 Time must be (in essential attribute of every entity in the system.

In a time driven system, it is necessary that all parts of the system have a uniform and consistent

view of time and a way of handling it. In MARUTI, time is treated as an attribute of every entity

and all operations are carried out with respect to time. This approach not only assures the time

driven operation but also permits reasoning about the temporal properties of the system.

Principle 2 Do as much work for preparing an application for execution as early as possible.

It is difficult to predict and account for operating system overheads in a demand scheduling

model. In a real time system this adversely affects the required deterministic guarantees. To assure

real-time operation the operating system overheads at run time must be predictable and minimized

for efficiency purposes. Therefore, during run time, real time operating systems should perform

only those tasks that are strictly necessary.

In MARUTI, the application development process goes through several phases. All the compo-

nents of an application contain the placeholders for all the resource and timing information. The

values to these placeholders are assigned as early during the development phase as they can be

assessed, refining them as the application development process proceeds.

Principle 3 All resources needed by a hard real-time application must be reserved prior to execu-

tion.
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Clearly, adherence to this principle is essential to guarantee the successful execution of hard

real-time applications for which a guarantee can only be given if all resources needed can be made

available in a timely manner.

We consider a semi-dynamic model for real-time systems, in which a job is submitted for

processing prior to its release time (earliest start time). The time between the submission of a jobl
and its release time can be used by the system for carrying out the resource allocation without

affecting the timely operation of the application. I
In order to accept a real time job for execution, the system performs resource allocation for that

job. For hard-real time jobs, if all resources necessary for the execution are available within the

time constraints requested, the job is accepted for real-time execution. Otherwise the job request

is denied. Soft-real time jobs however, do not need such deterministic guarantees. Non-real time

jobs are run on time and resource availability basis and do not require resource reservation. In this

paper, we primarily focus on hard real-time operation.

Communication is a vital part of most real-time applications and thus the required resources for I
communication must be reserved as well. A special case of communication, namely synchronization

between tasks, is also achieved via appropriate scheduling and resource reservations.

Principle 4 Support for fault tolerance is an integral part of the system.

Most real time applications are of critical nature and operate in an unreliable environment. It

becomes imperative that the system provide adequate execution support despite the presence of

failures. Faul, tolerance is treated as an essential aspect of MARUTI. Support for fault tolerance is

uniform, starting at the lowest level and defining error handlers and different plans of actions at

each level. The fault handling can be carried out in real-time or non-real time manner as needed I
by a particular application. These characteristics permit a systematic methodology of execution in

a fault tolerant mode, rather than in an ad-hoc manner.

5 User View of Applications 3
In this section we describe the user view of the applications, i.e., a brief overview of the programming

paradigm as well as the capabilities available to the user. I
An application program is a collection of cooperating software modules. The modules may

dommunicate with each other using shared resources or message passing. Communication through I
message passing can be synchronous (i.e., remote procedure call) or asynchronous (i.e., one way

invocation). 3
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The user specifies timing constraints for the entire program and may also specify timing con-

straints for individual modules. The constraints for a module can be expressed in terms of absolute

time or can be specified relative to the timing constraints of other modules.

The relationship between software modules may be specified as precedencc, cxclusior or other

constraints such as simultaneity (i.e., modules must execute simultaneously) and indivisibility (i.e.,

one module must execute after another with no loss of state from the first module)[22, 14].

Fault tolerance requirements can be specified by indicating the resiliency degree. The resiliency

can be specified on an individual module basis or for the entire application program. Upon the

detection of a fault, user specified actions (or system defaults) are taken to handle the fault.

Mechanisms are also provided to specify exceptions and exception handlers.

A named collection of programs constitutes a scenario. Each scenario defines a mode of opera-

tion of a real-time system and contains all programs necessary to operate in that mode. Scenarios

can also be seen as sudden changes in the executing programs, in response to some stimuli. Sce-

narios are useful in situations where there are limited resources for execution of multiple programs,

or where programs are mutually exclusive.

In our programming paradigm we do not allow nondeterministic behavior, due to the real-time

requirements. This imposes some discipline that the programmer must observe (see section 3).

6 Maruti Mechanisms and Structures

MARUTI has been designed using a consistent set of mechanisms and models. In this section we

present the framework used in this system. Let us consider the resource model used in MARUTI.

6.1 Resource Model

In our model, the resources are divided into two types: active and passive. An active resource

is capable of autonomous operation, for example CPUs and DMA devices. Passive resources are

the storage devices (e.g., memory and secondary storage), which are used by the active resources.

Passive resources may be shared and are also used for communication between modules in the same

node. Note that both active and passive resources are required for internode communication.

Active resources are partitioned into disjoint groups called M EARGs (Mutually Exclusive Active

Resources Groups). Each active resource belongs to exactly one MEARG. The set of active resources

,available in a distributed system may now be considered as a set of MEARGs. A task' executes using

the resources of one MEARG and a set of passive resources.

'A task is a basic executable entity. In section 6.2.2, we show how tasks are obtained from application programs.
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The schedule for each MEARG and for each passive resource is kept in a structure called a

calendarqlOj. The calendar can be viewed as a sequence of non-overlapping time intervals, each of

which has a task associateýd with it (the task that will execute during that interval). If a resource

can only be used exclusively, an interval can have only one task associated with it.

6.2 Model of Computation I
To facilitate resource allocation, the system view of an application program differs from the user

view. This distinction comes about due to the different granularity of elements that compose a

program. In this section we describe the basic building block of a program, how to create a program, I
how to add fault tolerance to it, and finally how to allocate resources for it.

6.2.1 Elemental Units

In the system view, the building block of an application program is an elemental unit (EU). When

an EU is scheduled, we refer to it as a task. A task is then the basic entity for execution. A module

requires software2 , state, and resources to execute on a given input to produce output. All these

are encapsulated into an EU along with constraints on input and output (Figure 1).

monitors

Qservices
-- data and synchronization

Figure 1: Elemental Unit

Input conditions are boolean expressions on the input data, state, time, and capabilities which

are evaluated to trigger services provided by the EU. Similarly, output conditions are checks on

outgoing data and state, as well as on the timing requirements of the EU. In addition, input and

output data may be correlated before generating results.

The structure of EUs makes it is possible to accomplish uniform treatment of both computation

and communication services (Figure la). For example, a computational EU is typically determined

by the data received and generated, by their corresponding validity checks, and by a program

that requires a state and hardware resources to operate. A communication EU is analogous, where

input and output data are the messages, input conditions may be empty, output conditions check for

message corruption, the software is comprised of the data buffering and data movement protocols,

and the hardware requirement consists of buffers, communication links (for remote communication),

2Throughout this work we assume that the software is reentrant.

I
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I
and processor to execute the software. Another aspect of computations, namely synchronization,

can also be accomplished by requiring the input condition to be satisfied only when all messages
have arrived (see Figure 2).

I , ,

I (a) (b)

Figure 2: (a) EU communication and (b) EU. synchronization

I Input and output data are the pieces of information transmitted between EUs or that come

from the environment. In addition to the messages, files and other environment data (e.g., current

time or other system parameters) can also be considered as input and output data.

Input and output conditions are specified by the user and depend on the data, the state, andf the instance of the software module. Temporal constraints can also be checked as part of input and

output conditions. The evaluation of conditions can trigger executions, correlate input and output

parameters, check validity of states, etc. Note that the evaluation of conditions require hardware

resources and the state of the EU. If an error is detected, the appropriate EU is notified, which is

depicted by the lateral arrows in Figure 1.

6.2.2 Application Representation

I An application program is characterized by a directed acyclic graph called the Elemental Unit

Graph (EUG), augmented with timing constraints and operational relations. A vertex in the EUG

is an elemental unit and arcs represent control flow.

A task is a unit of execution in our resource model. A task executes using the resources of

a MEARG and a set of passive resources. In the system view, tasks communicate using message

passing at the end of the task. A module which requires more than one MEARG must be decomposed

into sub-modules to conform to the resource model. Optimization techniques like buffering may be

I used to reduce overheads introduced by such decomposition.

The timing constraint of a task is represented as a 3-tuple, (r, c, d), where r is its release time,3 c its execution time and d its deadline. Time constraints may be defined in terms of absolute times

or relative to the time constraints of other tasks. The time constraints of tasks may be derived

I from the application time constraints.

Operational relations are used to represent synchronization between tasks. Examples of such
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relations are precedence and mutual exclusion. Another relation called mnditt1bihdty el-u r,-- xi

preservation of execution state. For instance in the Figure 3. an indivisibility i'atakii i!.ýv ,I

defined between A1 and A2 , and another between k.A and A3.

Communication between EUs is represented by an EU which require!, conlu! zcatt,!n,

and other resources for execution. These communication EUs are automatjicalvy gexwiýtetd I,•.

erogeneity is easily supported by performing data translation to a common network LIpr4. tmiti,,:,

[31-

r/

module A A )

S- \ ) .. . >- ...
flP(B)A 2  (A 2 )AI

SEND (C) s

Figure 3: (a) User software modules (b) EU structure (c E UG

6.3 Application Life-Cycle I
The life-cycle of an application program can be divided into dclt'opmrcrit and opcrftional ,haLc;

The application development process goes through several phases before it is ready for operation.

In accordance with principle 2, we try to accomplish as much as possible in each phase.

1. Development Phase: This phase is broken down into three stages, namely design, coni-

pilation, and integration. The result of this phase is an executable application program.

represented by an EUG, and which is ready to be submitted for execution.

"* Design. This stage is the starting point of the development of an application during

which the overall design is carried out. The activities during this stage includo require-

ments specification, conceptual design and detailed design.

"* Compilation. The software modules are created at this stage with the interface speci- I
fications. Tools are available at this stage to decompose a software module (Figure 3a)

into sub-modules such that each sub-module can be treated as an EU (Figure 3b). The

static resource requirements for each EU are extracted at this stage. Figure 3 shows an

example of such a transformation. The input and output constraints for each EU may

I
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be generated automatically from the interface specification. I ht- FU tiruc'.urt- of thte

modules is used during the integration stage.

Integration. In the integration stage module, ar,_i i er f,,i, t. , . ,

An EUG is generated from the interconnections specified and the -V ,,t Vu!#' ri-

crated during the compilation stage, as shown in Figure 3c, The relni•zu tiwi ,

requirements for the application are identified and recorded with the , tt

as the generation of communication tasks between EUs. In order to verify th..• The i'-

terconnections are valid, syntactic type checking on the interface oetifi ati,. f 1-I

is carried out at the time of integration.

2. Operational Phase: The operational phase consists of resource aluocatio;, and exccutikj.

For hard-real time applications, we require that resource allocation be done privr to -,c ut onS.

"* Resource allocation. When an application program is submitted for executiu. toh

user may specify, the time constraints by identifying the rhea.st trinf and d u,%e.f 1,,,) (T

periodic applications, the period and termination condition must be provided Nii e,\e

cuting program is called a job. The allocation and reservation of resources t( tarks.1 ii1

a job is performed at this stage. Also, various kinds of synchronization consttraints ;.r,

satisfied intrinsically in this stage [21j.

"* Execution. During this stagc the op•,•tng sstem perfo:,rms dispatchinig. :c',,

passing and reservation enforcement. Previous stages prepare the application for this.

stage, such that the overheads are minimal. The dispatcher need only examino the

calendar and dispatch the tasks whose start time has arrived. In addition. we carn

guarantee the absence of deadlocks, since there is no waiting.

6.4 Resource Allocation

One main problem we need to address is that of creating the calendars for MEARGS and passive

resources so that tasks are executed within their time constraints. While a task requests a single

MEARG, there may be several MEARGs capable of meeting this requirement. In general, this leads to

a multiple resource management problem which has been shown to be rather complex[6]. Grouping

resources in MEARGS reduces the complexity somewhat but does not eliminate it. In a distributed

environment the MEARGS may be at different nodes, and each node may contain several MEARs.

To allow efficient allocation of the MEARGs and passive resources, we create calendars in three

phases: global allocation, local allocation, and local scheduling.
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Global Allocators (GAs) use system-wide resource usage information to decide the node in which

a set of tasks is to execute. The Local Allocator (LA) carries out the allocation of the re.-ouro- 3
needed to execute a task, by selecting one among the several eligible .t EAKGC aiid some pa>,ivu

resources. The LA is also responsible for coordinating the scheduling of resources to %arious utf,.,

of an application so that their operational relations can be maintained. The actual intervai k•

execution of a task is determined by the Local Scheduler (LS), which makes the necessary entrirw- 111i

the calendar of a resource (MEARG or passive resource). The start and end tune!: of the execul' ol!

of a task 1 are denoted by s, and e,, respectively 3 . Also, there is one logical LS for each cah.oidar.

Let us consider the interaction between local allocators and local schedulers. Consider a simple 3
situation where tasks tj and t2 require MEARGS mi and Yn2 , respectively. Both these tasks are

submitted for scheduling in the same multiprocessor node and assume that ti sends some data to j
t2 through a common shared passive resource R (i.e., the shared buffers must be allocated from

the beginning of t1 to the end of t2 ). The LS for R is called LSR. The interaction between the

allocators and schedulers is described below.

1. LA sends allocation requests to LSs of nil and rn2 for scheduling of tj and t1..

2. LSs respond with exact start times for execution.

3. LA sends an allocation request to LSR for duration Ks,, .ei. 3
4. TSR responds.

5. On success, LA sends commit to LSs. 3
Note: If the request is rejected, the LA or the GA may try allocation at some other resource.

A limitation to this approach, however, is that the LSR has no flexibility in the scheduling of I
the passive resource. Furthermore, the calendars can only be modified by ncegotiation, bet.veen

the LA, LSR and LSs. This costly negotiation and lack of flexibility, however, can be remedied by 3
management of the passive resources, as follows. In addition to responding with the start times in

step 2 above, the LSs also provide the forward and backward slacks associated with each task. The

forward and backward slacks of task i (fi and bj) are the amount of time a task can be postponed

or advanced without violating the timing constraints of tasks in a calendar. The LA sends the

scheduled times plus the slack times to the LSR. The LSR schedules the passive resource for the I
interval [st - 6I,et 2 + 62], such that 0 < ýj < bt,,0 < 62 _< ft2. The LSR sends 61 and 62 to LA,

which passes it to the LSs along with the commit responses. This scheme allows LS the flexibility 3
to move tasks without the overhead needed to consult with the LSR as subsequent tasks arrive at

the LS. 3
3 1n this paper we consider only non-preemptive scheduling, such that r. =. s. + c,.

I
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We have taken the approach of a tiered allocation/scheduling, combined with our resource

model, to allow for the scheduling of multiple MEARGs and passive resources for tasks. Two ;d-

vantages can be identified with this approach. One is that this scheme allows for co!ncurrencv in

scheduling of individual MEARGS. The LA is capable of initiating multiple local schedulkvrs ,oi!

currently without waiting for replies. The second advantage is modularity, which allows teoting of

different policies at each phase.

6.5 Fault Tolerance

The critical nature of many real-time applications requires resiliency to faults. An important

aspect of the MARUTI system is support for fault tolerance. Our main goal is, given a user-specified

resiliency degree and a program, to produce a fault tolerant program that will be mapped to the

resources during the allocation phase. The resulting job should tolerate faults to the level requested

by the user during its execution.

6.5.1 Fault Model

We consider an EU as the unit of failure of an application. In this model the input and output

conditions function as the fault detection mechanism. Once a fault has been detected, a fault

handling EU may be invoked. Such EU may invoke other EUs to perform recovery and reporting

(Figure 4). The fault handling policies in these elemental units can be specified by the user or be a

system-defined default, such as aborting the computation and sending a message to the operator's

console. For each elemental unit, fault handlers may have different criticalities and execute in

different time domains. For example, some may execute in real time (for which resource reservation

must be performed) and some others on a resource and time a' ailability basis.

O error FHandkr error

(a) (b) (c)

Figure 4: (a) EUG; (b) User fault handlers; (c) Default fault handlers

For fault tolerance purposes, we assume that it is possible to group NI EARGS into fault-independent

partitiors, i.e., a fault in one partition does not cause a fault in another partition. This fault inde-
pendence assumption is valid at a hardware level, taking into account issues such as independent
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power sources and different architectures for components. At the software level, independence

requires that the replicated versions be of different designs and implementationsf2. 3
6.5.2 Approach 5
Fault tolerance for real-time systems is not only complex from the point of view of functional

correctness, but also due to the timing constraints and resource requirements. In that s.etnse, the

scheme adopted to tolerate faults in such systems must take these factors into consideration, as

well as the timing requirements of the application as a whole and the user-defined resiliency degree.

Due to the real-time constraints, we use an active modular redundancy approach to construct

a resilient application, in a user-transparent way. For each application submitted to the system,

the user specifies the required resiliency degree rd. We must ensure that the number of replicas 5
executing the same application is enough to tolerate up to rd faults. The actual number of replicas

rd+l depends on the type of faults, the detection scheme, and the system architecture. A discussion

on the different values of I is beyond the scope of this paper (see [13, 11] for more details), and inl

the remainder of our discussion we consider I to be equal to 1.

We do not use roll-back mechanisms such as checkpointing [4], since time is a critical resource U
that should be accounted for. Roll-back type of methods are applicable to systems where time is

not a critical issne 181. I
6.5.3 Resilient Elemental Unit Graphs 3
In Section 6.2.2, we described how to construct elemental unit graphs. In this section we describe

how to transform an EUG into a resilient EUG (REUG). This process is carried out during the 3
integration stage of the development. The main idea is to replicate the EUs to make the application

resilient.

The REUG can be built with global or local redundancy (Figure 5). Global redundancy is based I
on replication of the EUG as a whole, where the execution of each replicated EUGs is treated

indepetndently. On the other hand, local redundancy replicates specific EUs and can be divided

into total or partial redundancy. Partial redundancy replicates only a subset of the EUs, while

total redundancy replicates each and every EU in the EUG. Such flexibility (different types of 3
redundancy) is needed because the EUs in an application might have different probabilities of fault

and different criticality.

The software component of each replicated EU need not use the same algorithm design. They

may encompass algorithmic alternatives to achieve design independence. Each EU replica is placed I
in a different partition, to enforce the fault independence at the hardware level. The user-defined

I
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Figure 5: (a) EUG, and REUG by (b) global, (c) total, and (d) partial redundancy

resiliency degree is guaranteed since there is enough redundancy to carry out the application despite

the presence of failures.

in order to manage these EU replicas and the communication among them, we associate auxil-

iary structures, namely forkers and joiners, with each EU in the REUG. These auxiliary structures

are inserted in the REUG automatically and in a user-transparent manner. Consider a message m

from task A to task B. The forker for A sends m to all the replicas of B. The joiner of B collects

the messages from A and its replicas, and filters them using a message selection algorithm to elect

the correct message. It then sends the correct message to the destination B.

A consequence of the use of joiners is that some fault elimination takes place. When the joiner
selects one of the incoming messages, and when selection results in the correct message, all incorrect

messages get eliminated. Note that the joiners may also recognize the errors in the messages and

may be used to trigger corrective actions.

6.5.-4 Discussion

The approach introduced above provides fault tolerance in a uniform way, while maintaining flexi-
bility through user-specified resiliency degrees and message selection algorithms. Also, the creation

of an REUG and its allocation across partitions of the distributed system is transparent to the

user, unless custom fault toler-nce is used to create the REUG (partial redundancy). In the partial

redundancy case, the user needs only to specify the critical EUs, and the system automatically

generates the REUG. In other words, changing the fault tolerance requirements does not affect the

functional behavior of the program.

The allocation of REUGs is carried out in a distributed manner [12]. The allocation scheme also

enforces that fault detection and recovery are consistent with the real-time constraints, which makes

the scheme suitable for real-time applications. In addition, our apr oach does not require special
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hardware. Treatment of faults is an intrinsic characteristic to the application design. due 'o th(e

EU fault handling structures defined at the application design level. This facilitates. mnaintenanc1 e 3
of the system, and allows for changing the levels of criticality of an program (both •b'i•rl,,lporedai

functional) after design and integration, but before execution time. 5
Our model also allows users to achieve a balance between the resource overhead introduced b,1

processing fault-tolerant EUs and the probability of faults. In other words, the user can decid", olL

the cost/reliability trade-off oased on the requirements of applications by specifying the resiliecy 5
degree for parts of the EUG and the type of redundancy used. Furthermore, It is not difficult to

see that the construction of the REUGs are semantic preserving, with respect to the FXUGs defined 3
by the users.

7 Concluding Remarks

In this paper we presented the basic structure of MARU'TI and the philosophy used in its design. 3
Our experience to date confirms our belief that the comprehensive solutions can only be generated

by addressing all the requirements the system must meet at the system design time aid developinw 5
integrated solutions. For example, in MARUTI the fault handling as well as time handling is car-

ried out uniformly. The fault tolerance capabilities are available in a user transparent way, while

permitting the user to enhance the default capabilities if so desired.

The feasibility of the approach taken has been demonstrated through an implementation of

MARUTI, at the University of Maryland. The time driven and distributed nature of this design has I
been established and tested successfully. The fault handling capabilities of the design have been

validated for homogeneous architectures. 3
An interesting aspect of the design of MARUTI is the way it handles the distributed operations

in homogeneous as well as heterogeneous environments. In addition, due to its modular design, it

lends itself naturally as a testbed for evaluation of the resource management policies. We are inI

the process of studying various policies applicable to the management of multiple resources, as well

as demonstrating the heterogeneous operation of the system.
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I ABSTRACT

"Case studies where written up, are rarely presented in forms
which reveal ..... the full range of difficulties encountered." [1].
The intent of this paper is to document "difficulties encountered"
during the past seven years of modelling for analysis of a
submarine combat system architecture. Lessons learned, along with
resulting recommendations, will be presented. We have divided the
modelling process into five phases: Data Acquisition and Archive,
Model Design, Model Implementation, Model Exercise, and Results

i Analysis [22]. The paper is organized to present the lessons
learned as they apply to each of these phases. Products and
methodologies which are under development or are planned as a
result of these lessons will be listed under Products and
Methodologies.

I INTRODUCTION

The Naval Undersea Warfare Center (NUWC) began using modelling
to assess the performance of the architecture of a large, complex
submarine combat system at the very earliest stage of the program,
that is, virtually while the system was still in the requirements
definition phase. MYSTECH ASSOCIATES, INC. (MYSTECH) joined the

I NUWC architecture modelling team late in 1986 as the competing
contractors were preparing their proposals. The modelling team has
continued to monitor the development of the system throughout its

I full life-cycle: from the proposal evaluation, through Full Scale
Engineering Development (FSED), and into the test and evaluation
phase.

I This was an ambitious undertaking considering the magnitude of
the new system, and the fact that the architecture team was

I functionally and geographically separated. Initially, there were
those who were hesitant and skeptical about the value of modelling

I
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for architecture performance evaluation. However, as the program
developed, and results were achieved, the impact of the molelling
on the contractors' proposed designs became evident. Those who had 3
been cautious about accepting the approach began to recognize the
contribution of modelling to the system development. Animation of
the models provided visual demonstration which facilitated I
management's comprehension of our effort. The use of operational
scenarios as model drivers translated well to operationally
oriented program managers.

The utility of modelling was demonstrated to other programs as
well. During 1989, NUWC decided to apply the technology to the I
analysis of a surface ship ASW system. MYSTECH is now supporting
NUWC on that program. 3

The methodologies used to develop the models and evaluate the
system architecture are well documented [3,4,5,61. This paper 3
deals with some of the difficulties encountered over the past seven
years, and the lessons learned. The sections of the paper coincide
with the five phases into which we have divided the modelling i
process: Data Acquisition and Archive, Model Design, Model
Implementation, Model Exercise, and Results Analysis. Each section

presents a brief statement of the lesson (in bold type), a n
discussion of the difficulties experienced, and a list of
recommendations suggested by each lesson. At the end of the
paper, methodologies and products which result from the lessons are I
discussed. I

DATA ACQUISITION AND ARCHIVE

A. Data acquisition is the most time consuming portion and has I
the largest learning curve in the modelling process. "Much time
and money can be consumed by what is known as 'getting started.'"
[7].

Given that the system under investigation was new system
development, and especially during the proposal preparation phase,
the majority of the quantitative information and data was unknown.
Whatever data was available was typically from "hearsay" and that m
information was frequently changing. Due to the "fuzziness" of
data and the constant fluctuations in levels of information,
everything had to be verified and validated before it could be

I
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used. Once the contract was awarded, the data became more
I substantial but it continued to change frequently. Additionally,

most of the information was still at a very high level of
abstraction, which is to be expected during the early stages of anyI system development.

Early on in the program, when quantitative data was not yetI available, we learned to use our Best Engineering Judgement (BEJ),
as described in [31. This process enables the judicious
application of knowledge gained on previous, or like, systems
developments to the current system under evaluation. All the data
developed using BEJ needed to be verified. The prime directiveI was: "Do not use data you do not understand" [81. The search for
information to verify these assumptions was very time consuming
since there was no central repository.

I General combat systems knowledge, as well as specific data
concerning elements within the proposed competing architectures,I was gathered from as many areas as possible. Sources included
engineers and documentation from other related NUWC programs.
Acoustic, database management, and simulation experts provided aI rich source of information. Product literature on operating
systems and database management systems, specifically those under
consideration in the proposals, provided baseline data for the
simulations. As much information as possible was gathered from
whatever documentation was received from the competing contractors,
and subsequently from the prime development contractor after the
award.

Recommendations:

1. Use of "best engineering judgement" to fill in the holes
is a useful and productive process when applied with extensive
record keeping and verification. This allows the project to move
forward while the painstaking process of data gathering is going
on.

2. An extensive system-specific document library was
developed which contained all documentation received during
competition and then during FSED. As each document or memorandum
was received, it was catalogued and stored, and a notice was
distributed to all team members.
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3. The ability to reuse documents/knowledge/data from one
program to the next saves valuable time and effort. When talking
about the reuse of problem solving information, Rumbut emphasizes
the value of "reusing specification data from previous development
efforts" [9]. Knowledge gained from the submarine combat system
architecture evaluation provided valuable support, and shortened U
the start-up time, when the modelling process was initiated on the
surface ship ASW system. Specifically, knowledge of the
communication network, methodology for designing the model, and the I
actual skeleton of the system model were all re-used.

4. Data acquisition must be started as early in the i
modelling process as possible. As much documentation as possible
was gathered as quickly as possible to begin development of a
surface ship ASW system document library.

B. Much time can be consumed waiting for all the data for the 3
development of a complete and accurate model.

In preparation for evaluation of the proposed submarine combat 5
system designs, several NUWC engineers were tasked to define a
notional architecture to model nearly ten months before the time
that the NUWC/MYSTECH team was assembled. As mentioned, there was I
very little data available, especially at that point in the
program. The team finally did build a skeleton of a system model,
nearly a full year after the original tasking. Nine months later, I
a memo documenting model results was written containing the
statement "Results are considered preliminary because of the many
assumptions and 'best engineering judgements' incorporated in the
model" [101. Two years into the project, 50% of the messages in the
Interface Requirements Specification (IRS) were still incomplete. 3

At times, the system model contained varying levels of detail
as system component data became available at different times. For I
instance, there was detailed information about the communication
network protocols, but very little was known about the workstations
and data manager. Jenevein notes: "The model must deal well with I
different levels of design abstraction ...... components which are
not to be immediately implemented can be left in abstract form and
interfaced to the more resolved component models" [ill.
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Recommendation:

1. Models were developed in a top down fashion, starting
with simple, high level models and using BEJ where needed. All
assumptions and engineering judgements were documented and included
with model results. As data became available, corrections and
amplifications were made and the models became more detailed. In
this manner, we were able to evaluate the proposed system
architectures with a degree of confidence, especially during the
proposal preparation phase, despite the lack of information.

C. Careful records of assumptions and data must be maintained for
validation and verification (V&V) . Without traceability, chaos can
result.

The assumptions and best engineering judgements used to
develop our models were replaced with actual data as it became
available. As the system design evolved, data such as system
topologies, bus rates, message rates and lengths, maximum message
and packet lengths, and communications network queue priorities,
changed frequently. Team leaders cautioned: "Don't throw anything
away - things are constantly changing" [8].

Two models were developed simultaneously, one for each of the
two competing architecture designs. Thus, it became imperative
that information for the two models, sometimes very similar, be
kept separate and distinct. Our goal was to evaluate the
architecture of the proposed systems. Model results were one of
the means to achieving this goal. For results to be credible, we
had to be able to justify the data used to produce them.

The models shifted rapidly from proposal evaluation models to
FSED models. Some of the models were over four years old by that
time. We needed to be able to retrieve and justify any data which
was used in the original models or model designs. By the time FSED
models were being developed, enough information had been archived,
and enough models had been built, to enable a structured V&V
process.

Our model results were compared with the results of the
development contractor's own modelling efforts, so all assumptions,
engineering judgements, and data used to develop the models had to
be documented for identification and verification. Comparison of
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results from the two parallel efforts provided additional V&V, and
encouraged dialogue between the two organizations. 3

A database was maintained containing thousands of messages
used to drive the models. We created message groupings by
combining messages by source and destination, and then by rate, and I
executed the models with these groupings. Despite the careful
recording of which messages were used in which model and for which
run, there was a problem tracing the origination of some messages U
and their rates and sizes. We actually had an internal lessons
learned meeting at the time to review what had gone wrong. The
finding was that there still was not enough record keeping and data
archival.

Recommendations:

1. The importance of a catalogued document library was 3
emphasized. This facilitated the retrieval of data sources, and
provided traceability. 5

2. An extensive database of the messages, operational events
from the scenario, system software modules, and processor
characteristics was developed and maintained.

3. An engineering notebook was developed and maintained for
each model. Meeting notes, memos, model designs, assumptions,
BEJs, questions, issues, results of all runs, and analysis of the
results were recorded. 3

4. Naming conventions were established for modules,
messages, and hardware devices for use within the models. 3

5. A Standard Template for Software Development specified
preamble standards for documentation of each module [12]. Items I
included in this template were:

a. routine name and purpose I
b. author
c. release date
d. modification dates
e. inputs and outputs
f. global and local program variables

g. subroutines that called this routine
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h. subroutines called by this routine
i. change list, including date and description
j. special testing considerations.

6. Several standards were developed to "ensure that all
models produced..... form a consistent set of tools" [13]. These
standards included module execution time estimates [141, message
rate groupings, channel characterizations, and network delay and
overhead rate calculations.

7. The models were designed to make extensive use of input
files, which made the data easy to identify and retrieve. Input
files were developed for software processes, hardware devices,
messages, system topologies, and scenarios.

MODEL DESIGN

A. First, know and understand the model goals. That is, what
information are you trying to get from the model?

The architecture lead engineer admonished us to "wear a system
engineering hat" and to remember what our requirements were, that
the "goal was to evaluate the architecture, not develop a model"
[8]. This was especially important because we were evaluating a
system throughout its development process, and the overall program
issues changed as the program matured.

We got immersed in a modelling problem in which the number of
modules (M) increased tremendously based on the number of nodes (N)
in the topology (M=N(3+2N)). Considerable manhours were spent
looking for possible solutions. Finally, we asked ourselves "what
are we trying to accomplish in this modelling effort? what
questions do we want to answer?" [8).

Recommendations:

1. A set of metrics for system architecture performance
evaluation were defined. These came to be known as "the big eight"
and were incorporated into the goals for every model:

a. resource utilization
b. system throughput
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c. message response time
d. data latency
e. data senescence 3
f. system expandability
g. system reconfigurability
h. identification of system 'choke points'.

These measures were useful in evaluating system behavior under
various reconfiguration conditions, and to study failure modes and
possible recovery actions. As the evolution of the system brought
about different critical system issues, these eight metrics 3
remained the overall modelling objectives.

2. To prevent the models from "taking on a life of their 3
own", thus becoming unresponsive to program objectives, a
structured review cycle was developed to be followed for each of
the models. This consisted of several structured steps which all U
members of the modelling team were expected to follow:

a. initial strategy meeting I
b. requirements/goals review
c. high level design review
d. detailed design reviews I
e. model implementation
f. results review
g. conclusions and recommendations report.

Throughout this cycle, the models' goals were kept visible to 3
ensure that the models were attaining them.

B. A model must be tailored to a specific area of interest: too 3
broad is as undesirable as too much detail.

The initial plan for the system model was to include every I
element of the system architecture. This would have produced a
model which was too big, too complex, and virtually unmanageable.
"We had a concern that our model was too complex but that a simpler I
model would reduce the sensitivity." (8].

The modelling team was directed to develop a smaller, detailed i
model for each individual subsystem within the combat system; at
the same time still develop a larger system model. It was not 3
immediately clear how to separate the detailed models from the

I
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system model. Even though a system topology diagram was used to
determine where the dividing lines should be, there was still much
confusion. It was difficult to determine how to partition the
system elements. It also became unclear as to what the "system
model" actually was [15].

Recommendations:

1. Looking at the system from both directions at once (i.e.,
from the top down and from the bottom up) gave valuable insight
into the important details. This produced a reliable set of
partitions. For example:

a) Implementation of the partitioning guidelines
defined in (3] provided some structure which eliminated
the confusion. Using a top down approach, a high level
system model was defined with black boxes for the
subsystems. In addition, a Register Insertion Ring
Network (RIRN) model was developed using black boxes for
each node. Later, a detailed node model was developed
consisting of three segments, one for each processor
within the node.

b) Reversing the process, a bottom up approach was also
used. For each competing contractor's architecture,
detailed models were developed of the data manager,
system network, system executive (operating system),
signal processing, and workstation. These detailed
models were then abstracted and represented as black
boxes in the system model.

2. Definition of interfaces between models is critical.
Clearly defined interfaces between separate models must be ensured
if they are to be connected to a system model at some point. One
important guideline that was imposed was "not to hook things that
are not really elements of the real system so they don't corrupt
the data flow" [8]. Statistical distributions were used to
represent each detailed model and that element's impact on the
system. Use of a common set of scenarios to drive all the models
provides a consistent foundation between the detailed models and
the system model.
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C. Must ensure that the model is easy to modify and maintain.

The assumptions used in the models changed constantly, 3
therefore had to be easily visible and identifiable. During the
very early stages of the program, not only did topologies change
frequently, but the actual hardware elements of the system changed
as proposed designs evolved. In fact, the specific database
management system and operating system were not chosen until well
into the FSED phase of the program.

Since the models were used to perform parametric studies, 5
parameters to be varied had to be easily accessed. During proposal
evaluation, rapid prototyping was performed to support NUWC's
requests for certain types of simulation runs where results were
needed within 24 hours.

During that time, the simulation language of choice was CACI's 3
NETWORK 1.50® [161, which was very easy to use. However, one of
its limitations was that every hardware device in the model had to
have its own separate hardware device definition and software
module. Since the system model had dozens of nodes which were all
physically and functionally identical, a single hardware
definition/software module pair should have been sufficient to
describe all the nodes. Instead we had to define a separate pair
for each node, with the only difference being their names. Every
time a node changed, which happened frequently, numerous identical
modifications had to be made. Typographical errors were prevalent
due to the similarities within the names. 3
Recommendations:

1. The simulation language of choice changed from NETWORK
11.5 to CACI's SIMSCRIPT II.5® [17), which provided for greater
model complexity while allowing ease of modification; both of I
which negated the cost of greater model development effort.

I
NETWORK I11.5 is a registered trademark and service mark of CACI, Inc. - Federal.

®'SIMSCRIPT 11.5 is a registered trademark and service mark of C.ACI, Inc.-

Federal. 3

I
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2. Extensive use of input files was made to contain much of
the frequently changing data. There were files to represent
several different model parameters:

a. message files contained sources, destinations,
rates and lengths

b. hardware files contained processor speeds and bus
speeds

C. software files contained processing times and SLOC
sizes

d. operational scenario files contained operator
actions and tactical event descriptions

e. topology files contained architecture topology
descriptions

f. application to device files contained detailed
software to hardware mappings.

D. Model design must provide for use of parametric loading ac
well as realistic operational scenarios.

The system model was used to perform parametric studies with
varying message rates, lengths and iteration periods. These
studies were used to measure response times over different network
paths. Messages were generated periodically, either with some
statistical distribution or actual system intervals. We called
these simulations "time driven". In some of these studies, the
model was also loaded with background "noise" in which statistical
distributions were used to simulate network traffic and device
processing delays. Specific test messages were then injected on
top of this "noise" to measure critical paths and actual message
delays.

Realistic cperational scenarios were constructed to provide
insight into the behavior of the system architecture under
different levels of operational stress. The system model was
driven by several stress scripts in which actual system messages
were transferred over the network and software processing was
incurred as realistically as possible. The events simulated
included aperiodic operator actions such as console button pushes,
which incur a specific system response. Most of the operator
actions also caused a chain of events to occur in which messages
were generated asynchronously. We called these simulations "event
driven". In addition to the scenario events, some of these
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simulations also modelled the overhead incurred by such background
processing as database management, PM/FL, the operating system and
resource management.

Recommendations: 3
1. Construction of input files to define the varying

parameters for the parametric studies is useful. In this way the
code will not require modification for each study.

2. The messages to be used for time driven simulations 3
should be contained in input files. Scenario inputs for event
driven simulations should be contained in input files as well.
These should include not only the initiating operator actions, but 3
also the resulting chains of events (i.e. processing times and
messages). 3

3. Use operational scenarios to exercise the models. This
provides not only a common source of data to be used by all the
models and model developers but further reinforces the model's I
ability to accurately evaluate the system for its intended purpose.
In addition, because these scenarios are developed using combat
system terminology, models can be more readily explained to other I
system engineers involved in the program and more readily
appreciated by management. It is easier to describe the
architecture's behavior in the context of something such as system
IPL rather than "getting a message from A to B via nodes X, Y, Z".

4. Models should be designed to support event driven
simulations and their asynchronous operational events and messages.
This provides insight into the behavior of the system under various I
realistic stress conditions.

MODEL IMPLEMENTATION

A. May need to use different modelling techniques and tools I
depending upon the elements to be modelled.

Early in the program, before eithzj- competitor had settled on I
an acoustic front end architecture, NUWC chose to model a
representative cabinet associated with a deployed sonar system to 3
explore the dynamics of that data processing. This was a good

I
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first model since there was exist in data and results ,ould be
reasonably well predicted. The model 1 esults ed
spreadsheet calculations, conif i 1, 1 bK ae i that 11h's p, r u 1i

pipelined and did not require dynamic elinz.

One model of the entire combat system architecture would havte
been too large if all the details were included. Even with careful
application of methods defined in [31, the system ,mod(A becamn>.
increasingly large and complex tor NETWORK I1.5. It was diftiicult
to modify and replicate modules, and simulations took too long.

Recommendat ions:

1 1. Tool selection should be tailored to the characteristics
of the elements to be modelled and .. -Ždrl goals. Dynamic models
are often not necessary, nor •_,e they always productive, when a
static model of the eiement can be us,_t. Indeed, early in the
process spreadsheet type models might be preferable.

1 2. Statistical distributions can be calculated, using a
package such as UNIFIT* [181, to represent the detailed models of
system components in the system model.

3. Be prepared to change simulation languages as models
mature, or goals change. For example, SIMSCRIPT 11.5 replaced
NETWORK 11.5 as the models became increasingly complex.

I B. Be able to support portability of models across various
platforms.

I The NUWC/MYSTECH modelling team was geographically dispersed
at various sites in Rhode Island and Connecticut. Models were
developed and run at each of these sites, )-'it on different
machines.

Some of the simulations, being run on a VAX 11/780 and VAX

11/785, took several days to complete. 1n an effort to reduce
execution time and increase performance, the models were ported to
SUN workstations which produced faster run times. Eventually, two
o1 the models were ported to a CRAY where run times were reduced toI hours instead of days.

•'NIFIT is a registered trademark of Select Software Services.

I
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Animation was used as a debugging aid, to enhance our
understanding of how the architecture behaved and to support
demonstrations. To meet that need, the models were ported to Sun I
workstations

Recommendations: i
1. The benefits of portability became apparent very quickly

as models were developed on different machines at different sites. I
The ability to use the SUNs and a CRAY to shorten simulation run
times was crucial for providing rapid turnaround of model results. 3
2he use of SUNs, and PCs if possible, to support animation provides
a valuable way to instruct model users and program managers who are
otherwise unfamiliar with the models or modelling tool. I
Furthermore, no programming changes should be required to move from
one platform to another. Otherwise, there will be additional
configuration management impacts. The simulation language must be I
chosen carefully at the outset to ensure ease of portability later.

MODEL EXERCISE

A. Must have good configuration management in order to replicate I
runs.

We performed numerous runs with each model due to erroneous or
changing data. The models were used to perform parametric studies
and rapid prototyping. They were executed under a variety of 3
different operational scenarios. Despite the engineering
notebooks, naming conventions, input files and modelling standards,
it was still a difficult process to keep track of each run: its I
purpose, unique parameters, run time and duration.

Recommendations: i
1. For parametric studies, SIMSCRIPT II.5's reset statement

was used to perform multiple runs with one batch job. This
statement reinitializes all statistical counters relative to the
listed variables. The entire parametric study could be performed
with one simulation by resetting the selected parameter and all the
statistics for each run. Selected simulation tools should have
this capability. 3

I
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2. A directory tree structure was developed for orgar;izing
I each model, its runs, and its unique input files. All common input

files were stored in one directory. Full path names were specified
within the models.

3. Output files were designed such that all initialization
parameters for a given simulation, including all input file names,
were echoed to the output files at the beginning of the simulation.
This design was incorporated into the surface ship ASW system

I models as well.

j RESULTS ANALYSIS

A. Thorough V&V of the model and its results must occur
I throughout the life cycle of the model.

As would be expected, a thorough analysis of simulation
I results occurred after the initial runs to V&V the system model.

However, as the model was undergoing numerous, however minor,
modifications and being used for rapid prototype runs, not all the
modifications were thoroughly verified for their impact on the
model. One set of results showed high utilizations on certain
processors but upon further research, we determined that there were
errors in some message iteration periods and other messages were
being transferred from the wrong source. In another instance,
large queues ended up being the result of typographical errors in
source and destination names. Once we animated the model, we
re there was an error in the way that the message protocol
seqL was implemented.

Recommendations:

1. The structured review cycle described under Model Design
can be applied. Although it may be impractical to apply to minor
model modifications, ensure that all major design changes and, of
course, any new models follow the review cycle.

2. Maintain engineering notebooks and ensure all model
designs, design changes and model load files are recorded in the
notebooks.
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3. Divide the modelling team into three groups: scenario
developers, model developers and model analysts. The scenario
developers design all scenarios to be used to drive the models and I
define the messages and processing events which should be included
in each operational event sequence. The model developers design
and develop all the models. The model analysts analyze all the I
simulation results for model V&V, and for performance evaluation of
the system being modelled. In this way, the scenario developers
become responsible for the accuracy of the messages and processing
events which are to be loaded onto the model. The model developers
become responsible for implementing an accurate system simulation. 3
The analysts become responsible for ensuring the accuracy of the
results and determining the causes of any variations or anomalies.

B. Steady state and transients may cause problems in results if
not well understood. 3

The model runs had to be of sufficient duration to ensure that
steady state was reached. Steady state problems occurred when the
system model was loaded such that all periodic messages were I
transmitted starting at time zero. This caused a heavy initial
load on the system, so we had to wait until the effects of this had
settled out and the messages began their individual periodic
generation cycles.

The analysis of particular model runs revealed large message
queues at some nodes. It seemed that the model had uncovered a
system bottleneck. Further investigation determined that the cause 3
of the large queues was several long messages being transferred
from those nodes. Upon additional analysis, it was discovered that
these messages did not travel over the network and should not be I
included in system network evaluations. A thorough investigation
of the transient large queues deterred us from perhaps erroneously
reporting the existence of a system bottleneck.

Recommendations: 3
1. Use of periodic snapshots during the model runs supports

assessment of when steady state has been reached. U
2. The modelling language's reset option should be used to

reset the statistics during the simulations after the initial heavy 3
load of messages has occurred.

6
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3. To alleviate some of the initial heavy loading problem,
develop start time rules for when to start periodic messages.

4. Dividing the modelling team into subgroups as described
under Results Analysis, facilitates the ability to uncover problems
observed in the results. The separation of the team into scenario
developers, model developers and results analysts ensures distinct
allocation of responsibilities. This supports the "retracing of
steps", from statistical output to model input or model design,
needed to understand transient results.

C. Must use caution when comparing results of different models.

When the project began, there were three separate modelling
efforts being conducted in parallel: each competing contractor
developed models of their own proposed architecture; NUWC also
developed a separate model for each competing architecture. This
meant four different models. The modelling languages used for each
were not necessarily the same. The problem became: how do we
compare the models' results and make sure that the comparisons are
valid and fair?

An operational scenario consistent with doctrine and the
intended use of the system was developed. A set of stress scripts
which depicted system load at various times during a mission were
extracted from the scenario. These scripts provided a common
baseline for loading and running all of the models. This enabled
the modelling team to evaluate results from different models of the
same architectures using the same set of metrics.

After source selection, two parallel architecture modelling
efforts were conducted by NUWC and the development contractor.
Results were compared. In some instances, the results conflicted
but it turned out to be caused by either the use of different
assumptions or a difference in model implementation. A conflict in
resource utilizations was found to be caused by the addition of
messages which did not in fact travel over the network, and the
implementation of multicasting communications within the NUWC
model. Higher transfer delay times were due to an erroneous
implementation of a data packet transfer through a forwarding node.
Once changes were made, the results were consistent between the
models.
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Recommendations: I

1. The initial choice would seem to be to use the same 3
modelling language. However, the goal of developing independent
models of the architectures is to verify that the contractor is in
fact designing the system as proposed and required. This can be U
verified via verification and validation of the contractor's
models. If the assumptions, data, designs, and implementations are
accurate, then results from separate models, even in different I
languages, should be consistent. A danger of using the same
language is that one of the modelling teams can easily end up
duplicating the other team's models without even being aware this
is happening. Hence an independent evaluation of the system does
not occur. 3

2. Using a common set of realistic operational scenarios to
drive the models provides a common baseline for comparison between I
the government's predictions and the prime development
contractor's. This forms the basis for a common understanding of
what is expected, a consistent set of results, and a forum in which I
to discuss resulting system issues, rather than dwelling on the
"ones and zeros".

GENERAL LESSONS 3
There are additional lessons, which did not result from

difficulties encountered, but became emphasized over the course of
the program. The NUWC/MYSTECH team consisted of people with
varying levels of experience and education. There were project
managers, systems and software engineers, operational analysts, and3
junior programmers. Years of experience ranged from over twenty
years to new hires fresh out of college. There were experienced
modelers, and some with no experience at all. Despite this I
diversity, the effort of designing and developing the models taught
two very valuable lessons: 3

A. Even if the models had not been built, the amount of
information gathered on the new system design, and the insight
gained from dissecting the architecture into its various components U
for close scrutiny provided valuable support to NUWC's Technical
Direction Agent responsibilities. Model development is a good 3

I
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educational tool to support learning about the intricacies of a
system quickly.

B. The assignment of different tasks to different people
focussed their efforts. The definition of model goals provided a
direction to follow while uncovering the necessary data. The
interfaces between the detailed models and the system model, and
the structured review cycle, ensured the flow of information among
the team members so that everyone shared the same general level of
system understanding. The value of the TEAM was emphasized. The
sharing of information across functional and organizational
boundaries allowed NUWC to examine system interfaces and identify
critical areas of risk which may not otherwise have been
discovered. Important dialogues were initiated which will continue
for the next generation of systems development.

PRODUCTS AND METHODOLOGIES

Examination of the lessons learned over the past several years
indicates several voids in modelling and analysis activities which
we are now beginning to fill. Several products and methodologies
are being developed which capitalize on the lessons [191. This
section describes those products and methodologies.

"* Develop an information base to store all the data as it
is acquired. Organize the data so that it can easily be
accessed for other projects and models.

"* Add to the information base all system performance
requirements and model data to facilitate configuration
management.

"* Develop a library of reusable simulation objects that can
be expanded as new models are developed. Include within
the library analytical and simulation tools and
languages, and in particular, include an object-oriented
programming language.

"* Add to the library any simulation and analytical models
which can be reused on different modelling tasks.
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• Develop a Concept Assessment Tool to aid the modeler in
organizing and learning top level system requirements. 3

a Design the Concept Assessment Tool such that it becomes
an automated method for composing a set of measures of
effectivenejs from system performance requirements.
Tying evaluation criteria to specific system requirements
allows validation of model goals. 3

0 Develop a run time control facility to assist in setting
up model runs and submitting and controlling the runs. I
The facility would also support the creation of a run
library containing all the elements required to replicate
a run. I

0 Utilize the run time control facility to assist the
modeler in preparing the runs, and to provide 3
configuration management of the model runs.

0 Develop an analysis/V&V facility to assist the analyst in I
evaluating model results. Utilize animation capabilities
to assist in model V&V. 3

SUMMARY 3
Difficulties encountered over the past seven years of

submarine combat system architecture modelling, and the lessons I
learned along with their recommended solutions, have been explored.
Several products and methodologies for avoiding the same
difficulties (or at least being better prepared to meet them) in I
the future have been discussed. Future plans for application of
these products and methods are being developed. These plans 3
include:

* Development of an integrated simulation environment which 3
would include facilities for scenario generation, model
development, and results analysis. The simulation
environment should provide all the tools needed forn
accurate and thorough assessment of an architecture
through simulation. 3

3
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* Development of a graphical interface to the simulation
environment which would include a model user facility to
allow program managers and system designers to perform
analysis and evaluation without needing to know the
details of the models themselves.
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